PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base.

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2005; 311:179-91. DOI: 10.1385/1-59259-957-5:179
Source: PubMed

ABSTRACT The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB) is an interactive tool for researchers investigating how genetic variation effects drug response. The PharmGKB web site,, displays genotype, molecular, and clinical primary data integrated with literature, pathway representations, protocol information, and links to additional external resources. Users can search and browse the knowledge base by genes, drugs, diseases, and pathways. Registration is free to the entire research community but subject to an agreement to respect the rights and privacy of the individuals whose information is contained within the database. Registered users can access and download primary data to aid in the design of future pharmacogenetics and pharmacogenomics studies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of biological pathways is key to a large number of systems analyses. However, many relevant tools consider a limited number of pathway sources, missing out on many genes and gene-to-gene connections. Simply pooling several pathways sources would result in redundancy and the lack of systematic pathway interrelations. To address this, we exercised a combination of hierarchical clustering and nearest neighbor graph representation, with judiciously selected cutoff values, thereby consolidating 3215 human pathways from 12 sources into a set of 1073 SuperPaths. Our unification algorithm finds a balance between reducing redundancy and optimizing the level of pathway-related informativeness for individual genes. We show a substantial enhancement of the SuperPaths' capacity to infer gene-to-gene relationships when compared with individual pathway sources, separately or taken together. Further, we demonstrate that the chosen 12 sources entail nearly exhaustive gene coverage. The computed SuperPaths are presented in a new online database, PathCards, showing each SuperPath, its constituent network of pathways, and its contained genes. This provides researchers with a rich, searchable systems analysis resource.Database URL: © The Author(s) 2015. Published by Oxford University Press.
    Database The Journal of Biological Databases and Curation 02/2015; 2015. DOI:10.1093/database/bav006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the four major non‑communicable diseases (NCD), responsible for ~14.6% of all human deaths. Currently, there are >100 different known types of cancer and >500 genes involved in cancer. Ongoing research efforts have been focused on cancer etiology and therapy. As a result, there is an exponential growth of cancer‑associated data from diverse resources, such as scientific publications, genome‑wide association studies, gene expression experiments, gene‑gene or protein‑protein interaction data, enzymatic assays, epige-nomics, immunomics and cytogenetics, stored in relevant repositories. These data are complex and heterogeneous, ranging from unprocessed, unstructured data in the form of raw sequences and polymorphisms to well‑annotated, structured data. Consequently, the storage, mining, retrieval and analysis of these data in an efficient and meaningful manner pose a major challenge to biomedical investigators. In the current review, we present the central, publicly accessible databases that contain data pertinent to cancer, the resources available for delivering and analyzing information from these databases, as well as databases dedicated to specific types of cancer. Examples for this wealth of cancer‑related information and bioinformatic tools have also been provided.
    Oncology Reports 01/2015; 33(1). DOI:10.3892/or.2014.3579
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advances in characterizing genetic influences on addiction liability and treatment response, clinical applications of these efforts have been slow to evolve. Although challenges to clinical translation remain, stakeholders already face decisions about evidentiary thresholds for the uptake of pharmacogenetic tests in practice. There is optimism about potential pharmacogenetic applications for the treatment of alcohol use disorders, with particular interest in the OPRM1 A118G polymorphism as a moderator of naltrexone response. Findings from human and animal studies suggest preliminary evidence for the clinical validity of this association; on this basis, arguments for clinical implementation can be made in accordance with existing frameworks for the uptake of genomic applications. However, generating evidence-based guidelines requires evaluating the clinical utility of pharmacogenetic tests. This goal will remain challenging, largely due to minimal data to inform clinical utility estimates. The pace of genomic discovery highlights the need for clinical utility and implementation research to inform future translation efforts. Near-term implementation of promising pharmacogenetic tests can help expedite this goal, generating an evidence base to enable efficient translation as additional gene-drug associations are discovered.
    Addiction science & clinical practice 09/2014; 9(1):20. DOI:10.1186/1940-0640-9-20