Article

Smoking and lung cancer.

Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
Tuberkuloz ve toraks 02/2005; 53(2):200-9.
Source: PubMed

ABSTRACT Nowadays, around one-third of adults are known to be smokers, and smoking rates are increasing among the female population. It is estimated that deaths attributable to tobacco use will rise to 10 million by 2025, and one-third of all adult deaths are expected to be related to cigarette smoking. The association between cigarettes and lung cancer has been proven by large cohort studies. Tobacco use has been reported to be the main cause of 90% of male and 79% of female lung cancers. 90% of deaths from lung cancer are estimated to be due to smoking. The risk of lung cancer development is 20-40 times higher in lifelong smokers compared to non-smokers. Environmental cigarette smoke exposure and different types of smoking have been shown to cause pulmonary carcinoma. DNA adducts, the metabolites of smoke carcinogens bound covalently with DNA, are regarded as an indicator of cancer risk in smokers. In recent decades, there has been a shift from squamous and small cell lung cancer types to adenocarcinoma, due to increasing rates of smoking among female population and rising light cigarette usage. After smoking cessation, the cumulative death risk from lung cancer decreases. Patients who continue smoking experience greater difficulties during cancer treatment. Stopping smoking may prolong survival in cancer patients, and also decreases the risk of recurrent pulmonary carcinoma. In order to save lives and prevent smoking related hazards, physicians should advise both healthy individuals and those with cancer of the benefits of stopping smoking.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have investigated the association between tumor necrosis factor alpha (TNF-α) gene 308G/A polymorphism and lung cancer risk, but the results were inconsistent. We thus comprehensively searched the PubMed, EMBASE, and BIOSIS Previews databases and extracted data from all eligible articles to estimate the association between TNF-α gene 308G/A polymorphism and lung cancer risk. The pooled odds ratio (OR) with 95 % confidence intervals (CIs) were calculated. Twelve case-control studies in 11 articles involving 2,436 cases and 2,573 controls were included in the meta-analysis to assess the association between TNF-α gene 308G>A polymorphism and susceptibility to lung cancer. Overall, TNF-α gene 308G>A polymorphism was significantly associated with an increased risk of lung cancer for A vs. G (OR = 1.13, 95 % CI 1.00 ~ 1.27, P = 0.04). Subgroup analysis by ethnicity showed that there was a significant association between TNF-α gene 308G>A polymorphism and increased risk of lung cancer in Asians, but not in Caucasians. In subgroup analysis by tumor type, there were significant associations between TNF-α gene 308G>A polymorphism and increased risk of lung cancer in small cell lung cancer (SCLC) for AA+AG vs. GG, in non-small cell lung cancer (NSCLC) for A vs. G, AA vs. GG, and AA+AG vs. GG. No association between the genotypes and different stages of lung cancer was detected. The meta-analysis suggests that TNF-α gene 308G>A polymorphism is associated with an increased risk of lung cancer, particularly among Asians, both for SCLC and NSCLC, considering tumor type.
    Tumor Biology 06/2014; · 2.84 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: This review summarizes peer-reviewed studies examining cancer risks among police officers. It provides an overview of existing research limitations and uncertainties and the plausible etiologic risk factors associated with cancer in this understudied occupation. METHODS: Previous cancer studies among police officers were obtained via a systematic review of the MEDLINE, CABDirect, and Web of Science bibliographic databases. RESULTS: Quality observational studies of cancer among police officers are sparse and subject to limitations in exposure assessment and other methods. Results from three studies suggested possible increased mortality risks for all cancers, and cancers of the colon, kidney, digestive system, esophagus, male breast, and testis, as well as Hodgkin's disease. Few incidence studies have been performed, and results have been mixed, although some associations with police work have been observed for thyroid, skin, and male breast cancer. CONCLUSIONS: Police are exposed to a mix of known or suspected agents or activities that increase cancer risk. Epidemiologic evidence to date is sparse and inconsistent. There is a critical need for more research to understand the biological and social processes underlying exposures and the suggested disproportionate risks and to identify effective prevention strategies. Am. J. Ind. Med. © 2012 Wiley Periodicals, Inc.
    American Journal of Industrial Medicine 12/2012; · 1.59 Impact Factor