Article

Nitric oxide production and signaling in inflammation.

The Immunopharmacology Research Group, University of Tampere Medical School and Research Unit, Tampere University Hospital, Tampere, Finland.
Current Drug Targets - Inflammation & Allergy 09/2005; 4(4):471-9. DOI: 10.2174/1568010054526359
Source: PubMed

ABSTRACT Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. It possesses cytotoxic properties that are aimed against pathogenic microbes, but it can also have damaging effects on host tissues. NO reacts with soluble guanylate cyclase to form cyclic guanosine monophosphate (cGMP), which mediates many of the effects of NO. NO can also interact with molecular oxygen and superoxide anion to produce reactive nitrogen species that can modify various cellular functions. These indirect effects of NO have a significant role in inflammation, where NO is produced in high amounts by inducible nitric oxide synthase (iNOS) and reactive oxygen species are synthesized by activated inflammatory cells. The present review deals with NO production and signaling in inflammation, especially in relation to human neutrophils and eosinophils.

0 Bookmarks
 · 
211 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    Environmental Toxicology 12/2014; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with demyelination and axonal loss eventually leading to neurodegeneration. MS exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB). The BBB is a complex organization of cerebral endothelial cells, pericytes and their basal lamina, which are surrounded and supported by astrocytes and perivascular macrophages. In pathological conditions, lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Cytotoxic factors including pro-inflammatory cytokines, proteases, and reactive oxygen and nitrogen species accumulate and may contribute to myelin destruction. Dysregulation of the BBB and transendothelial migration of activated leukocytes are among the earliest cerebrovascular abnormalities seen in MS brains and parallel the release of inflammatory cytokines. In this review we establish the importance of the role of the BBB in MS. Improvements in our understanding of molecular mechanism of BBB functioning in physiological and pathological conditions could lead to improvement in the quality of life of MS patients. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.
    Archives of Medical Research 11/2014; 45(8). · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To date, no study has been conducted to explore the bioactivity of the crinoid Comanthus bennetti. Here we report the anti-inflammatory properties of comaparvin (5,8-dihydroxy-10-methoxy-2-propylbenzo[h]chromen-4-one) based on in vivo experiments. Our preliminary screening for anti-inflammatory activity revealed that the crude extract of Comanthus bennetti significantly inhibited the expression of pro-inflammatory proteins in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. Comaparvin isolated from crinoids significantly decreased the expression of inducible nitric oxide synthase (iNOS) protein and mRNA in LPS-stimulated macrophage cells. Moreover, our results showed that post-treatment with comaparvin significantly inhibited mechanical allodynia, thermal hyperalgesia and weight-bearing deficits in rats with carrageenan-induced inflammation. Comaparvin also attenuated leukocyte infiltration and iNOS protein expression in carrageenan-induced inflamed paws. These results suggest that comaparvin is a potential anti-inflammatory therapeutic agent against inflammatory pain.
    Molecules 09/2014; 19(9):14667-14686. · 2.10 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
Feb 12, 2015