Article

Nitric oxide production and signaling in inflammation.

The Immunopharmacology Research Group, University of Tampere Medical School and Research Unit, Tampere University Hospital, Tampere, Finland.
Current Drug Targets - Inflammation & Allergy 09/2005; 4(4):471-9. DOI: 10.2174/1568010054526359
Source: PubMed

ABSTRACT Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. It possesses cytotoxic properties that are aimed against pathogenic microbes, but it can also have damaging effects on host tissues. NO reacts with soluble guanylate cyclase to form cyclic guanosine monophosphate (cGMP), which mediates many of the effects of NO. NO can also interact with molecular oxygen and superoxide anion to produce reactive nitrogen species that can modify various cellular functions. These indirect effects of NO have a significant role in inflammation, where NO is produced in high amounts by inducible nitric oxide synthase (iNOS) and reactive oxygen species are synthesized by activated inflammatory cells. The present review deals with NO production and signaling in inflammation, especially in relation to human neutrophils and eosinophils.

0 Bookmarks
 · 
172 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.
    International Journal of Molecular Sciences 01/2014; 15(9):16226-16245. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma OPEN ACCESS Molecules 2014, 19 16059 (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure–activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta-and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Molecules 10/2014; 19:16058-16081. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rubus Coreanus Miquel (RCM), used as a traditional Korean medicine, reduces chronic inflammatory diseases such as cancer and rheumatoid arthritis. However, its mechanism has not been elucidated. In this study, we examine the anti-inflammatory effects of RCM and their possible mechanisms using RAW 264.7 cells.
    Nutrition research and practice 10/2014; 8(5):501-8. · 0.97 Impact Factor

Full-text

Download
7 Downloads
Available from