Article

Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar.

Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-851, Japan.
Cell Motility and the Cytoskeleton (Impact Factor: 4.19). 11/2005; 62(2):84-99. DOI: 10.1002/cm.20087
Source: PubMed

ABSTRACT Phagocytosis plays an important role in the pathogenicity of the intestinal protozoan parasite Entamoeba histolytica. We compared the morphology of phagosomes and the kinetics of phagosome maturation using conventional light and electron microscopy and live imaging with video microscopy between the virulent E. histolytica and the closely-related, but non-virulent E. dispar species. Electron micrographs showed that axenically cultivated trophozoites of the two Entamoeba species revealed morphological differences in the number of bacteria contained in a single phagosome and the size of phagosomes. Video microscopy using pH-sensitive fluorescein isothiocynate-conjugated yeasts showed that phagosome acidification occurs within 2 min and persists for >12 h in both species. The acidity of phagosomes significantly differed between two species (4.58 +/- 0.36 or 5.83 +/- 0.38 in E. histolytica or E. dispar, respectively), which correlated well with the differences in the kinetics of degradation of promastigotes of GFP-expressing Leishmania amazonensis. The acidification of phagosomes was significantly inhibited by a myosin inhibitor, whereas it was only marginally inhibited by microtubules or actin inhibitors. A specific inhibitor of vacuolar ATPase, concanamycin A, interrupted both the acidification and degradation in phagosomes in both species, suggesting the ubiquitous role of vacuolar ATPase in the acidification and degradation in Entamoeba. In contrast, inhibitors against microtubules or cysteine proteases (CP) showed distinct effects on degradation in phagosomes between these two species. Although depolymerization of microtubules severely inhibited degradation in phagosomes of E. histolytica, it did not affect degradation in E. dispar. Similarly, the inhibition of CP significantly reduced degradation in phagosomes of E. histolytica, but not in E. dispar. These data suggest the presence of biochemical or functional differences in the involvement of microtubules and proteases in phagosome maturation and degradation between the two species.

0 Bookmarks
 · 
46 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protozoan parasite Entamoeba histolytica ingests and feeds on microorganisms and mammalian cells. Phagocytosis is essential for cell growth and implicated in pathogenesis of E. histolytica. We report here the dynamic changes of phagosome proteins during phagosome maturation by proteomic analysis using reversed-phase capillary liquid chromatography and ion trap tandem mass spectrometry. Phagosomes were isolated at various intervals after internalization of latex beads. Immunoblot analysis and electron microscopy verified successful isolation of phagosomes. A total of 159 proteins were identified from the reference strain HM1 at different stages of phagosome maturation. Approximately 70% of them were detected in a time-dependent fashion, suggesting dynamism of phagosome biogenesis. The kinetics of representative proteins were verified by immunoblots and also by video microscopy of live transgenic amebae expressing green fluorescent protein-fused EhRab7A. Furthermore, we observed significant differences in phagosome profiles between HM1 and two recent clinical isolates. Approximately 60% of 229 proteins detected in at least one of these three strains were identified only in one strain, while approximately 20% of these proteins were detected in all three strains. These data should provide significant insights into molecular characterization of phagosome biogenesis, and help to elucidate the pathogenesis of this important infection.
    Molecular and Biochemical Parasitology 03/2006; 145(2):171-83. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Entamoeba histolytica is the causative agent of human intestinal and liver amebiasis. The extraordinary phagocytic activity of E. histolytica trophozoites has been accepted as one of the virulence mechanisms responsible for their invasive capacity. The recognition of the noninvasive Entamoeba dispar as a different species has raised the question as to whether the lack of pathogenic potential of this ameba correlates with a limited phagocytic capacity. We have therefore compared the process of erythrophagocytosis in both species by means of light and video microscopy, hemoglobin measurement, and the estimation of reactive oxygen species (ROS). In the present study, we confirmed that E. dispar has lower erythrophagocytic capacity. We also observed by video microscopy a new event of erythrocyte opsonization-like in both species, being more characteristic in E. histolytica. Moreover, E. dispar showed a lower capacity to produce ROS compared with the invasive species and also showed a large population of amoebae that did not engulf any erythrocyte over time. Our results demonstrate that E. histolytica has a higher phagocytic capacity than E. dispar, including a higher rate of production of ROS in the course of ingesting red blood cells.
    BioMed Research International 01/2014; 2014:626259. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently identified 2 surface proteins in Entamoeba histolytica as intermediate subunits of galactose- and N-acetyl-D-galactosamine-inhibitable lectin (EhIgl1 and EhIgl2); these proteins both contain multiple CXXC motifs. Here, we report the molecular characterization of the corresponding proteins in Entamoeba dispar, which is neither pathogenic nor invasive. Two Igl genes encoding 1110 and 1106 amino acids (EdIgl1 and EdIgl2) were cloned from 2 strains of E. dispar. The amino acid sequence identities were 79% between EdIgl1 and EdIgl2, 75-76% between EdIgl1 and EhIgl1, and 73-74% between EdIgl2 and EhIgl2. However, all the CXXC motifs were conserved in the EdIgl proteins, suggesting that the fold conferred by this motif is important for function. Comparison of the expression level of the Igl genes by real-time RT-PCR showed 3-5 times higher expression of EdIgl1 compared to EdIgl2. Most EdIgl1 and EdIgl2 proteins were co-localized on the surface and in the cytoplasm of trophozoites, based on confocal microscopy. However, a different localization of EdIgl1 and EdIgl2 in intracellular vacuoles and a different level of phenotypic expression of the two Igls were also observed. These results demonstrate that Igls are important proteins even in non-pathogenic amoeba and that Igl1 and Igl2 may possess different functions.
    Parasitology 01/2008; 134(Pt.14):1989-99. · 2.36 Impact Factor

Full-text

View
2 Downloads
Available from