Article

Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications.

Laboratory of Physiology, O.&N. Gasthuisberg, K.U. Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
Cell Calcium (Impact Factor: 4.21). 09/2005; 38(3-4):291-302. DOI: 10.1016/j.ceca.2005.06.033
Source: PubMed

ABSTRACT Of the three mammalian members belonging to the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) family, SERCA2 is evolutionary the oldest and shows the most wide tissue-expression pattern. Two major SERCA2 splice variants are well-characterized: the muscle-specific isoform SERCA2a and the housekeeping isoform SERCA2b. Recently, several interacting proteins and post-translational modifications of SERCA2 were identified which may modulate the activity of the Ca2+ pump. This review aims to give an overview of the vast literature concerning the cell biological implications of the SERCA2 isoform diversity and the factors regulating SERCA2. Proteins reported to interact with SERCA2 from the cytosolic domain involve the anti-apoptotic Bcl-2, the insulin receptor substrates IRS1/2, the EF-hand Ca2+-binding protein S100A1 and acylphosphatase. We will focus on the very particular position of SERCA2 as an enzyme functioning in a thin, highly fluid, leaky and cholesterol-poor membrane. Possible differential interactions of SERCA2b and SERCA2a with calreticulin, calnexin and ERp57, which could occur within the lumen of the endoplasmic reticulum will be discussed. Reported post-translational modifications possibly affecting pump activity involve N-glycosylation, glutathionylation and Ca2+/calmodulin kinase II-dependent phosphorylation. Finally, the pronounced vulnerability to oxidative damage of SERCA2 appears to be pivotal in the etiology of various pathologies.

0 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis.
    Science Signaling 11/2014; 7(350):re11. DOI:10.1126/scisignal.2005671 · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies. Particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.
    Cell Calcium 08/2014; 56:311-322. DOI:10.1016/j.ceca.2014.08.006 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataracts formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1-5 days. All these lenses developed nuclear cataracts after 4-5 days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca(2+) from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 07/2014; 1842(9). DOI:10.1016/j.bbadis.2014.06.028 · 5.09 Impact Factor