Article

Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.

Molecular Biology Programs, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Nature (Impact Factor: 42.35). 09/2005; 436(7053):1053-7. DOI: 10.1038/nature03872
Source: PubMed

ABSTRACT DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.

1 Follower
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 03/2015; DOI:10.1002/em.21944 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.
    11/2013; 23(1):11. DOI:10.1186/2051-4190-23-11
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In meiotic DNA recombination, the Hop2-Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2-Mnd1 reveals that it forms a curved rod-like structure consisting of three leucine zippers and two kinked junctions. One end of the rod is linked to two juxtaposed winged-helix domains, and the other end is capped by extra α-helices to form a helical bundle-like structure. Deletion analysis shows that the helical bundle-like structure is sufficient for interacting with the Dmc1-ssDNA nucleofilament, and molecular modeling suggests that the curved rod could be accommodated into the helical groove of the nucleofilament. Remarkably, the winged-helix domains are juxtaposed at fixed relative orientation, and their binding to DNA is likely to perturb the base pairing according to molecular simulations. These findings allow us to propose a model explaining how Hop2-Mnd1 juxtaposes Dmc1-bound ssDNA with distorted recipient double-stranded DNA and thus facilitates strand invasion. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 03/2015; DOI:10.1093/nar/gkv172 · 8.81 Impact Factor