Mitogenic influence of human R-spondin1 on the intestinal epithelium

Nuvelo, Inc., 675 Almanor Avenue, Sunnyvale, CA 94085, USA.
Science (Impact Factor: 31.48). 09/2005; 309(5738):1256-9. DOI: 10.1126/science.1112521
Source: PubMed

ABSTRACT Several described growth factors influence the proliferation and regeneration of the intestinal epithelium. Using a transgenic mouse model, we identified a human gene, R-spondin1, with potent and specific proliferative effects on intestinal crypt cells. Human R-spondin1 (hRSpo1) is a thrombospondin domain-containing protein expressed in enteroendocrine cells as well as in epithelial cells in various tissues. Upon injection into mice, the protein induced rapid onset of crypt cell proliferation involving beta-catenin stabilization, possibly by a process that is distinct from the canonical Wnt-mediated signaling pathway. The protein also displayed efficacy in a model of chemotherapy-induced intestinal mucositis and may have therapeutic application in gastrointestinal diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylases (HDACs) are posttranslational modifiers that deacetylate proteins. Despite their crucial role in numerous biological processes, the use of broad-range HDAC inhibitors (HDACi), has shown clinical efficacy. However, undesired side effects highlight the necessity to better understand the biology of different HDACs and target the relevant HDACs. Using a novel mouse model, in which HDAC1 and HDAC2 can be simultaneously deleted in the intestine of adult mice, we show that the simultaneous deletion of HDAC1 and HDAC2 leads to a rapid loss of intestinal homeostasis. Importantly, this deletion cannot be sustained, and 8 days after initial ablation, stem cells that have escaped HDAC1 or HDAC2 deletion swiftly repopulate the intestinal lining. In vitro ablation of HDAC1 and HDAC2 using intestinal organoid cultures resulted in a down-regulation of multiple intestinal stem cell markers and functional loss of clonogenic capacity. Importantly, treatment of wild-type organoids with class I-specific HDACi MS-275 also induced a similar loss of stemness, providing a possible rationale for the gastrointestinal side effects often observed in HDACi-treated patients. In conclusion, these data show that HDAC1 and HDAC2 have a redundant function and are essential to maintain intestinal homeostasis.-Zimberlin, C. D., Lancini, C., Sno, R., Rosekrans, S. L., McLean, C. M., Vlaming, H., van den Brink, G. R., Bots, M., Medema, J. P., Dannenberg, J.-H. HDAC1 and HDAC2 collectively regulate intestinal stem cell homeostasis. © FASEB.
    The FASEB Journal 02/2015; 29(5). DOI:10.1096/fj.14-257931 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically.
    Scientific Reports 04/2015; 5:8566. DOI:10.1038/srep08566 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dishevelled (DVL) proteins serve as crucial regulators that transduce canonical Wnt signals to the GSK3β-destruction complex, resulting in the stabilization of β-catenin. Emerging evidence underscores the nuclear functions of DVLs, which are critical for Wnt/β-catenin signaling. However, the mechanism underlying DVL nuclear localization remains poorly understood. Here we discovered two Forkhead box (FOX) transcription factors, FOXK1 and FOXK2, as bona fide DVL-interacting proteins. FOXK1 and FOXK2 positively regulate Wnt/β-catenin signaling by translocating DVL into the nucleus. Moreover, FOXK1 and FOXK2 protein levels are elevated in human colorectal cancers and correlate with DVL nuclear localization. Conditional expression of Foxk2 in mice induced intestinal hyper-proliferation that featured enhanced DVL nuclear localization and upregulated Wnt/β-catenin signaling. Together, our results not only reveal a mechanism by which DVL is translocated into the nucleus but also suggest unexpected roles of FOXK1 and FOXK2 in regulating Wnt/β-catenin signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 03/2015; 32(6):707-18. DOI:10.1016/j.devcel.2015.01.031 · 10.37 Impact Factor


Available from
Aug 20, 2014