Article

The effect of diesel fuel sulfur content on particulate matter emissions for a nonroad diesel generator.

Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.
Journal of the Air & Waste Management Association (1995) (Impact Factor: 1.2). 08/2005; 55(7):993-8.
Source: PubMed

ABSTRACT The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively.

0 Bookmarks
 · 
465 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, experiments were performed with a tubular wet electrostatic precipitator (wESP) to evaluate its effectiveness for the removal of mass-and number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppm w) operating under varying load conditions was used as a stationary DPM emission source. The US EPA Method 5 ''Sampling Method for Stationary Sources'' and Method 1A ''Sampling and Velocity Traverses for Stationary Sources with Small Stacks or Ducts'' were adopted as reference methods for measurement of DPM mass concentration. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to varying engine loads and to different operational control parameters, such as corona power and gas residence time, to determine their effect on overall removal efficiency. The results show that the removal efficiency of the wESP increased as the engine loads decreased principally due to an increase in gas residence time and a decrease in DPM concentrations. At a constant wESP voltage and engine load, the increase of gas residence time within the wESP led to a significant increase in total DPM removal efficiency. In addition, total DPM removal efficiency was found to be directly related to the corona power, with increasing removal efficiency measured for increases in corona power. The linear correlation of DPM effective migration velocity and superficial gas velocity was established and an empirical equation is given. The wESP appears to be a promising alternative method for control of mass-based as well as number-based DPM emissions.
    Journal of Electrostatics 01/2007; 65:618--624. · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many organizations are interested in biodiesel as a renewable, domestic energy source for use in transportation and heavy-duty equipment. Although numerous biodiesel emission studies exist, biodiesel exposure studies are nearly absent from the literature. This study compared the impact of petroleum diesel fuel and a B20 blend (20% soy-based biodiesel/80% petroleum diesel) on occupational and environmental exposures at a rural municipal facility in Keene, NH. For each fuel type, we measured concentrations of fine particulate matter (PM2.5), elemental carbon (EC), and organic carbon (OC) at multiple locations (in-cabin, work area, and near-field) at a materials recovery facility utilizing non-road equipment. B20 fuel use resulted in significant reductions in PM2.5 mass (56–76%), reductions in EC (5–29%), and increases in OC (294–467%). Concentrations of PM2.5 measured during petroleum diesel use were up to four times higher than PM2.5 concentrations during B20 use. Further analysis of the EC and OC fractions of total carbon also indicated substantial differences between fuels. Our results demonstrate that biodiesel blends significantly reduced PM2.5 exposure compared to petroleum diesel fuel in a workplace utilizing non-road construction-type equipment. While this suggests that biodiesel may reduce health risks associated with exposure to fine particulate matter mass, more exposure research is needed to better understand biodiesel-related changes in particulate matter composition and other exposure metrics. KeywordsBiodiesel–Diesel–Occupational exposure–Environmental exposure–Particulate matter (PM)–Elemental carbon–Organic carbon
    Air Quality Atmosphere & Health 5(1):101-114. · 1.98 Impact Factor

Full-text

Download
1,847 Downloads
Available from
May 27, 2014