Article

Identification, cloning, expression, and characterization of the gene for Plasmodium knowlesi surface protein containing an altered thrombospondin repeat domain.

Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA.
Infection and Immunity (Impact Factor: 4.16). 10/2005; 73(9):5402-9. DOI: 10.1128/IAI.73.9.5402-5409.2005
Source: PubMed

ABSTRACT Proteins present on the surface of malaria parasites that participate in the process of invasion and adhesion to host cells are considered attractive vaccine targets. Aided by the availability of the partially completed genome sequence of the simian malaria parasite Plasmodium knowlesi, we have identified a 786-bp DNA sequence that encodes a 262-amino-acid-long protein, containing an altered version of the thrombospondin type I repeat domain (SPATR). Thrombospondin type 1 repeat domains participate in biologically diverse functions, such as cell attachment, mobility, proliferation, and extracellular protease activities. The SPATR from P. knowlesi (PkSPATR) shares 61% and 58% sequence identity with its Plasmodium falciparum and Plasmodium yoelii orthologs, respectively. By immunofluorescence analysis, we determined that PkSPATR is a multistage antigen that is expressed on the surface of P. knowlesi sporozoite and erythrocytic stage parasites. Recombinant PkSPATR produced in Escherichia coli binds to a human hepatoma cell line, HepG2, suggesting that PkSPATR is a parasite ligand that could be involved in sporozoite invasion of liver cells. Furthermore, recombinant PkSPATR reacted with pooled sera from P. knowlesi-infected rhesus monkeys, indicating that native PkSPATR is immunogenic during infection. Further efficacy evaluation studies in the P. knowlesi-rhesus monkey sporozoite challenge model will help to decide whether the SPATR molecule should be developed as a vaccine against human malarias.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii is an obligate intracellular protozoan parasite that invades a wide range of host cells. The parasite releases a large variety of proteins from a secretory organelle, microneme, and the secretion is essential for the parasite invasion. We cloned a secreted protein with an altered thrombospondin repeat of Toxoplasma gondii (TgSPATR), which was the homologue of Plasmodium SPATRs. Immunofluorescence double staining experiment revealed that TgSPATR was co-localized with a microneme protein, MIC2, and immuno-electron microscopic (IEM) analysis detected TgSPATR in the microneme-like structure. TgSPATR secretion was induced by ethanol, while an intracellular Ca(2+) chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM), suppressed the ethanol-induced secretion, suggesting the secretion was Ca(2+)-dependent, similarly to known microneme proteins. Furthermore, TgSPATR, existed on outer surface of the parasites, was detected by incomplete membrane permeabilization by saponin and immunofluorescent antibody test (IFAT). Both TgSPATR and MIC2 were detected on outer surface of extracellular parasites, but not of intracellular single parasites, suggesting they were similarly secreted during early stages of parasite invasion. Therefore, TgSPATR is probably new member of microneme protein and maybe involved in parasite invasion.
    Parasitology International 02/2010; 59(2):211-6. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum multi-stage proteins are involved in vital processes for parasite survival, which turns them into attractive targets for studies aimed at developing a fully effective antimalarial vaccine. MCP-1 and PfSPATR are both found in sporozoite and merozoite forms, and have been associated respectively with invasion of hepatocytes and red blood cells (RBCs). Binding assays with synthetic peptides derived from these two important proteins have enabled identifying those sequences binding with high specific activity (named High activity binding peptides-HABPs) to hepatoma-derived HepG2 cells and human RBCs. Twelve RBC HABPs were identified within the MCP-1 amino acid sequence, most of them in the C-terminal region. The MCP-1 HABPs 33387 and 33397 also presented high activity binding to HepG2 cells. PfSPATR presented four RBC HABPs and two HepG2 HABPs, but only one (32686) could bind to both cell types. RBC binding assays evidenced that binding of all HABPs was saturable and differentially affected by the enzymatic treatment of target cells. Moreover, all HABPs inhibited in vitro invasion of merozoites at 200 microM and had particular structural features when analyzed by circular dichroism. The results suggest that these synthetic peptides capable of binding to the two P. falciparum target cells could be potentially included in the design of a multi-stage, subunit-based, chemically synthesized antimalarial vaccine.
    Biochimie 10/2008; 90(11-12):1750-9. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host-cell invasion by apicomplexan parasites is a unique process that is powered by the gliding motility motor and requires a transmembrane link between the parasite cytoskeleton and the host cell. The thrombospondin-related anonymous protein (TRAP) from Plasmodium plays such a part during sporozoite invasion by linking to actin through its cytoplasmic tail while binding to hepatocytes via its extracellular portion. In recent years, there have been major advances in the identification and characterization of TRAP-family proteins in the other invasive stages of Plasmodium as well as other Apicomplexa. This review summarizes the recent experimental data on these TRAP-family proteins, focusing on their structure and function.
    Trends in Parasitology 02/2009; 25(2):77-84. · 6.22 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
Jun 5, 2014