Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans.

Department of Horticulture and Landscape Architecture, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523, USA.
Infection and Immunity (Impact Factor: 4.16). 10/2005; 73(9):5319-28. DOI: 10.1128/IAI.73.9.5319-5328.2005
Source: PubMed

ABSTRACT Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping genes. Our results indicate that in addition to its role as a signal molecule in plant defense responses, SA works as an anti-infective compound by affecting the physiology of P. aeruginosa and ultimately attenuating its virulence.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously discovered that Pseudomonas chlororaphis NRRL B-30761 produces monorhamnolipids (R1Ls) with predominantly 3-hydroxydodecenoyl-3-hydroxydecanoate (C12:1-C10) or 3-hydroxydodecanoyl-3-hydroxydecanoate (C12-C10) as the lipid moiety under static growth conditions only. We have now cloned, sequenced, and analyzed in silico the gene locus of NRRL B-30761 containing the putative coding sequences of rhamnosyltransferase chain A (rhlA Pch , 894 bps), rhamnosyltransferase chain B (rhlB Pch , 1272 bps), and N-acyl-homoserine lactone-dependent transcriptional regulatory protein (rhlR Pch , 726 bps). The putative gene products RhlAPch (297 amino acid residues or a.a.), RhlBPch (423 a.a.), and RhlRPch (241 a.a.) only have between 60 and 65 % a.a. identities to their respective closest matched homologs in P. aeruginosa. Polymerase chain reaction (PCR)-based assay did not detect the presence of rhamnosyltransferase C gene (rhlC) in P. chlororaphis, suggesting a genetic basis for the lack of dirhamnose-lipid (R2L) synthesis in this organism. We thus genetically constructed an R2L-synthesizing P. chlororaphis by expressing a rhamnosyltransferase C (rhlC) gene of P. aeruginosa using an expression vector (pBS29-P2-gfp) containing a Pseudomonas syringae promoter. The R2L/R1L ratio is 2.4 in the rhamnolipid (RL) sample isolated from the genetically engineered (GE) P. chlororaphis [pBS29-P2-rhlC], in contrast to undetectable R2L in the GE P. chlororaphis [pBS29-P2-gfp] control cells based on LC-MS analysis. The critical micelle concentrations of the R2L and R1L samples from GE P. chlororaphis [pBS29-P2-rhlC] and the control [pBS29-P2-gfp] cells were ca. 0.1 mM, and their minimum surface tensions were ca. 26 mN/m with no significant difference.
    Applied Microbiology and Biotechnology 02/2015; DOI:10.1007/s00253-015-6433-4 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems.ResultsIn this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta.Conclusions Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.
    BMC Plant Biology 01/2015; 15(1):10. DOI:10.1186/s12870-014-0411-3 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. Biofilms of S. suis may cause persistent infections by the host immune system and antibiotics. Sub-minimal inhibitory concentration (sub-MIC) of erythromycin can inhibit biofilm formation in bacteria. Here, we performed comparative proteomic analyses of cells at two different conditions: sub-MIC erythromycin treated and nontreated cells. Using iTRAQ strategy, we found some novel proteins that involved in biofilm formation. 79 differentially expressed proteins were identified in sub-MIC erythromycin inhibiting planktonic cell when the protein had both a fold-change of more that a ratio > 1.2 or < 0.8 (p-value < 0.05). Several cell surface proteins (such as Primosomal protein N′, l-fucose isomerase, and ABC superfamily ATP binding cassette transporter, membrane protein), as well as those involved in Quorum-sensing, were found to be implicated in biofilm formation. Overall, our results indicated that cell surface proteins played an important role in biofilm formation. Quorum-sensing played a crucial role leading to biofilm formation. ABC superfamily ATP binding cassette transporter, membrane protein and comD might act as channels for erythromycin uptake in Quorum-sensing system. Thus, our data analyzed rough regulatory pathways of biofilm formation that might potentially be exploited to deal with biofilm infections of S. suis. This article is part of a Special Issue entitled: Microbial Proteomics.
    Journal of Proteomics 01/2015; 116. DOI:10.1016/j.jprot.2014.12.019 · 3.93 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014