Article

Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma.

Department of Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany.
Hepatology (Impact Factor: 12). 12/2005; 42(5):1127-36. DOI: 10.1002/hep.20822
Source: PubMed

ABSTRACT Most cancer cells have an immortal growth capacity as a consequence of telomerase reactivation. Inhibition of this enzyme leads to increased telomere dysfunction, which limits the proliferative capacity of tumor cells; thus, telomerase inhibition represents a potentially safe and universal target for cancer treatment. We evaluated the potential of two thio-phosphoramidate oligonucleotide inhibitors of telomerase, GRN163 and GRN163L, as drug candidates for the treatment of human hepatoma. GRN163 and GRN163L were tested in preclinical studies using systemic administration to treat flank xenografts of different human hepatoma cell lines (Hep3B and Huh7) in nude mice. The studies showed that both GRN163 and GRN163L inhibited telomerase activity and tumor cell growth in a dose-dependent manner in vitro and in vivo. The potency and efficacy of the lipid-conjugated antagonist, GRN163L, was superior to the nonlipidated parent compound, GRN163. Impaired tumor growth in vivo was associated with critical telomere shortening, induction of telomere dysfunction, reduced rate of cell proliferation, and increased apoptosis in the treatment groups. In vitro, GRN163L administration led to higher prevalence of chromosomal telomere-free ends and DNA damage foci in both hepatoma cell lines. In addition, in vitro chemosensitivity assay showed that pretreatment with GRN163L increased doxorubicin sensitivity of Hep3B. In conclusion, our data support the development of GRN163L, a novel lipidated conjugate of the telomerase inhibitor GRN163, for systemic treatment of human hepatoma. In addition to limiting the proliferative capacity of hepatoma, GRN163L might also increase the sensitivity of this tumor type to conventional chemotherapy.

1 Bookmark
 · 
182 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer remains a public health problem with a high unmet medical demand. However, in recent decades, the knowledge of several functional molecular and biological traits that distinguish tumor cells from normal cells, known as the hallmarks of cancer as described by Hannahan and Weinberg, has led to new and modern therapeutic approaches against this disease. Most cancer drugs are deliberately developed for specific molecular targets that involve these hallmarks. In this review, we address the currently available cancer drugs and development of new drugs from the perspective of their interaction with these hallmarks as well as the pathways and mechanisms involved.
    Tumor Biology 01/2014; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced telomerase activity is a hallmark in the majority of cancer cells. Thus, understanding the interactions between telomerase and its inhibitors is fundamentally important for the development of novel anticancer drugs without severe side effects. In this study, the covalent binding of helenalin to CYS445 of telomerase (PDB ID: 3DU6) was simulated using combined quantum chemical and molecular mechanical (QM/MM) methods. The results showed that the reaction was a reversible Michael-type addition and a hydrogen bond was formed between helenalin and the side chain of LYS416 of telomerase during the reaction procedure. The LYS416 residue is vital to telomere DNA recognition by interacting with DNA base through hydrogen bonds. The alkylation of CYS445 of telomerase by helenalin may interfere with the telomere DNA recognition at the telomerase active site, thus resulting in inhibition of the enzyme activity.
    Journal of Molecular Graphics and Modelling. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: More than 85% of all human cancers possess the ability to maintain chromosome ends, or telomeres, by virtue of telomerase activity. Loss of functional telomeres is not compatible with survival, and telomerase inhibition has been established in several model systems to be a tractable target for cancer therapy. As human tumour cells typically maintain short equilibrium telomere lengths, we wondered if enforced telomere elongation would positively or negatively impact cell survival. We found that telomere elongation beyond a certain length significantly decreased cell clonogenic survival after gamma irradiation. Susceptibility to irradiation was dosage-dependent and increased at telomere lengths exceeding 17 kbp despite the fact that all chromosome ends retained telomeric DNA. These data suggest that an optimal telomere length may promote human cancer cell survival in the presence of genotoxic stress.
    DNA Repair. 11/2014;

Full-text (2 Sources)

Download
76 Downloads
Available from
May 27, 2014

Similar Publications

Sonja Schaetzlein