G2D: a tool for mining genes associated with disease

Ontario Genomics Innovation Centre, Ottawa Health Research Institute, ON K1H 8L6, Ottawa, Canada.
BMC Genetics (Impact Factor: 2.36). 02/2005; 6:45. DOI: 10.1186/1471-2156-6-45
Source: PubMed

ABSTRACT Human inherited diseases can be associated by genetic linkage with one or more genomic regions. The availability of the complete sequence of the human genome allows examining those locations for an associated gene. We previously developed an algorithm to prioritize genes on a chromosomal region according to their possible relation to an inherited disease using a combination of data mining on biomedical databases and gene sequence analysis.
We have implemented this method as a web application in our site G2D (Genes to Diseases). It allows users to inspect any region of the human genome to find candidate genes related to a genetic disease of their interest. In addition, the G2D server includes pre-computed analyses of candidate genes for 552 linked monogenic diseases without an associated gene, and the analysis of 18 asthma loci.
G2D can be publicly accessed at

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The advancement of high throughput omic technologies during the past few years has made it possible to perform many complex assays in a much shorter time than the traditional approaches. The rapid accumulation and wide availability of omic data generated by these technologies offer great opportunities to unravel disease mechanisms, but also presents significant challenges to extract knowledge from such massive data and to evaluate the findings. To address these challenges, a number of pathway and network based approaches have been introduced. This review article evaluates these methods and discusses their application in cancer biomarker discovery using hepatocellular carcinoma (HCC) as an example.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method to assist in interpretation of the functional impact of intergenic disease-associated SNPs that is not limited to search strategies proximal to the SNP. The method builds on two sources of external knowledge: the growing understanding of three-dimensional spatial relationships in the genome, and the substantial repository of information about relationships among genetic variants, genes, and diseases captured in the published biomedical literature. We integrate chromatin conformation capture data (HiC) with literature support to rank putative target genes of intergenic disease-associated SNPs. We demonstrate that this hybrid method outperforms a genomic distance baseline on a small test set of expression quantitative trait loci, as well as either method individually. In addition, we show the potential for this method to uncover relationships between intergenic SNPs and target genes across chromosomes. With more extensive chromatin conformation capture data becoming readily available, this method provides a way forward towards functional interpretation of SNPs in the context of the three dimensional structure of the genome in the nucleus.
    01/2014; 2:e639. DOI:10.7717/peerj.639
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.
    Cancer informatics 01/2014; 13(Suppl 1):69-79. DOI:10.4137/CIN.S13874

Full-text (2 Sources)

Available from
May 28, 2014