Article

The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J.

Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam, The Netherlands.
Nature Genetics (Impact Factor: 29.65). 10/2005; 37(9):934-5. DOI: 10.1038/ng1625
Source: PubMed

ABSTRACT The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.

0 Followers
 · 
216 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole and partial chromosome losses or gains and structural chromosome changes are hallmarks of human tumors. Guanine-rich DNA, which has a potential to form a G-quadruplex (G4) structure, is particularly vulnerable to changes. In Caenorhabditis elegans, faithful transmission of G-rich DNA is ensured by the DOG-1/FANCJ deadbox helicase. To identify a spectrum of mutations, after long-term propagation, we combined whole genome sequencing (WGS) and oligonucleotide array Comparative Genomic Hybridization (oaCGH) analysis of a C. elegans strain that was propagated, in the absence of DOG-1 and MDF-1/MAD1, for a total of 470 generations, with samples taken for long term storage (by freezing) in generations 170 and 270. We compared the genomes of F170 and F470 strains and identified 94 substitutions, 17 InDels, 3 duplications, and 139 deletions larger than 20 bp. These homozygous variants were predicted to impact 101 protein-coding genes. Phenotypic analysis of this strain revealed remarkable fitness recovery indicating that mutations, which have accumulated in the strain, are not only tolerated but also cooperate to achieve long-term population survival in the absence of DOG-1 and MDF-1. Furthermore, deletions larger than 20 bp were the only variants that frequently occurred in G-rich DNA. We showed that 126 of the possible 954 predicted monoG/C tracts, larger than 14 bp, were deleted in unc-46 mdf-1 such-4; dog-1 F470 (JNC170). Here, we identified variants that accumulated in C. elegans' genome after long-term propagation in the absence of DOG-1 and MDF-1. We showed that DNA sequences, with G4-forming potential, are vulnerable to deletion-formation in this genetic background.
    BMC Genomics 01/2015; 16(1):210. DOI:10.1186/s12864-015-1402-y · 4.04 Impact Factor
  • Source
    Frontiers in Genetics 02/2015; 6:39. DOI:10.3389/fgene.2015.00039
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The encouraging response rates of BRCA1- and BRCA2-mutated cancers toward PARP inhibitors make it worthwhile to identify other potential determinants of PARP inhibitor responsiveness. Since the Fanconi anemia (FA) pathway coordinates several DNA repair pathways, including homologous recombination in which BRCA1 and BRCA2 play important roles, we investigated whether this pathway harbors other predictors of PARP inhibitor sensitivity. Lymphoblastoid cell lines derived from individuals with FA or clinically related syndromes, such as Warsaw breakage syndrome, were tested for PARP inhibitor sensitivity. Remarkably, we found a strong variability in PARP inhibitor sensitivity among different FANCD1/BRCA2-deficient lymphoblasts, suggesting that PARP inhibitor response depends on the type of FANCD1/BRCA2 mutation. We identified the DNA helicases FANCM and DDX11 as determinants of PARP inhibitor response. These results may extend the utility of PARP inhibition as effective anticancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
    DNA Repair 12/2014; 26. DOI:10.1016/j.dnarep.2014.12.003 · 3.36 Impact Factor