Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia

Erasmus MC, Rotterdam, South Holland, Netherlands
Clinical Cancer Research (Impact Factor: 8.19). 09/2005; 11(16):6050-6. DOI: 10.1158/1078-0432.CCR-04-2097
Source: PubMed

ABSTRACT Glucocorticoid sensitivity is an important prognostic factor in pediatric acute lymphoblastic leukemia (ALL). For its antileukemic effect, glucocorticoid binds the intracellular glucocorticoid receptor (GR) subsequently regulating transcription of downstream genes. We analyzed whether genetic variations within the GR gene are related to differences in the cellular response to glucocorticoids. METHODS: In leukemic samples of 57 children, the GR gene was screened for nucleotide variations using a PCR/single-strand conformational polymorphism sequencing strategy. Data were linked to in vivo and in vitro glucocorticoid resistance. RESULTS: No somatic mutations were detected in the GR gene coding region, but six polymorphisms (i.e., ER22/23EK, N363S, BclI, intron mutation 16 bp upstream of exon 5, H588H, and N766N) were identified. In 67% of ALL cases, at least one minor allele of these polymorphisms was detected. Although only borderline significant, the incidence for the N363S polymorphism minor allele was higher (12% versus 6%, P = 0.06) and for the ER22/23EK minor allele lower (4% versus 7.6%, P = 0.1) than in a healthy, comparable population. The different genotypes of the polymorphisms were not related to prednisone resistance. In conclusion, polymorphisms but not somatic mutations in the GR gene coding region occur in leukemic blasts of children with ALL. Our data suggest that these genetic variations are not a major contributor for differences in cellular response to glucocorticoids in childhood ALL. The higher incidence of the N363S minor allele and the lower incidence of the ER22/23EK minor allele in our ALL population as compared with a normal population warrants further research.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis. Resistance to GCs can be a significant clinical problem, however, and correlates with resistance to several other major chemotherapeutic agents. We analyzed the effect of treatment with the cytosine analogue 5 aza-2' deoxycytidine (AZA) on GC resistance in two acute lymphoblastic leukemia (T or pre-T ALL) cell lines- CEM and Molt-4- and a (B-cell) myeloma cell line, RPMI 8226. Methods employed included tissue culture, flow cytometry, and assays for clonogenicity, cytosine extension, immunochemical identification of proteins, and gene transactivation. High throughput DNA sequencing was used to confirm DNA methylation status. Treatment of these cells with AZA resulted in altered DNA methylation and restored GC-evoked apoptosis in all 3 cell lines. In CEM cells the altered epigenetic state resulted in site-specific phosphorylation of the GR, increased GR potency, and GC-driven induction of the GR from promoters that lie in CpG islands. In RPMI 8226 cells, expression of relevant coregulators of GR function was altered. Activation of p38 mitogen-activated protein kinase (MAPK), which is central to a feed-forward mechanism of site-specific GR phosphorylation and ultimately, apoptosis, occurred in all 3 cell lines. These data show that in certain malignant hematologic B- and T-cell types, epigenetically controlled GC resistance can be reversed by cell exposure to a compound that causes DNA demethylation. The results encourage studies of application to in vivo systems, looking towards eventual clinical applications.
    Cancer Cell International 04/2014; 14:35. DOI:10.1186/1475-2867-14-35 · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Advances in our understanding of the pathobiology of childhood acute lymphoblastic leukemia (ALL) have led to risk-targeted treatment regimens and remarkable improvement in survival rates. Still, up to 20% of patients experience treatment failure due to drug resistance. Treatment-related toxicities are often life-threatening and are the primary cause of treatment interruption, while ALL survivors may develop complications due to exposure to chemotherapy and/or irradiation during a vulnerable period of development. Different factors may contribute to variable treatment outcomes including patient genetics that has been shown to play important role. Areas covered: This review summarizes candidate gene and genome-wide association studies that identified common polymorphisms underlying variability in treatment responses including a few studies addressing late effects of the treatment. Genetic variants influencing antileukemic drug effects or leukemic cell biology have been identified, including for example variants in folate-dependent enzymes, influx and efflux transporters, metabolizing enzymes, drug receptor or apoptotic proteins. Expert opinion: Many pharmacogenetic studies have been conducted in ALL and a variety of potential markers have been identified. Yet more comprehensive insight into genome variations influencing drug responses is needed. Whole exome/genome sequencing, careful study design, mechanistic explanation of association found and collaborative studies will ultimately lead to personalized treatment and improved therapeutic and health outcomes.
    Expert Opinion on Drug Metabolism &amp Toxicology 03/2014; DOI:10.1517/17425255.2014.893294 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following initial glucocorticoid treatment, the clinical course in children with nephrotic syndrome is highly variable. Intrinsic sensitivity to glucocorticoids might be a determinant of this variability. Functional polymorphisms of the glucocorticoid receptor gene NR3C1 have been associated with either relatively impaired (GR-9β) or increased (BclI) glucocorticoid sensitivity. Here, in a prospective, well-defined cohort of children with nephrotic syndrome, we evaluated both carriage of GR-9β+TthIII-1 and BclI haplotypes in 113 children and a dexamethasone suppression test in 90 children in relation to their clinical outcome over a median follow-up of 4.4 years. Carriers of GR-9β+TthIII-1 had a significantly higher incidence of steroid dependence 13/25 (52%) compared with noncarriers 19/75 (25%) with a hazard ratio adjusted for gender, age, and descent of 3.04 with 95% confidence interval 1.37-6.74. Both first and frequent relapses happened significantly more often in GR-9β+TthIII-1 carriers than in noncarriers. There were no significant differences in therapeutic outcomes between carriers and noncarriers of the BclI haplotype. Results of the dexamethasone test showed no associations with clinical outcome. Thus, the GR-9β+TthIII-1 haplotype of the glucocorticoid receptor gene offers new insights into the clinical course of children with nephrotic syndrome.Kidney International advance online publication, 15 January 2014; doi:10.1038/ki.2013.531.
    Kidney International 01/2014; DOI:10.1038/ki.2013.531 · 8.52 Impact Factor