Article

The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke.

Institute of Molecular Medicne for the prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 11/2005; 14(19):2829-37. DOI: 10.1093/hmg/ddi315
Source: PubMed

ABSTRACT Stroke is the leading cause of severe disability and the third leading cause of death, accounting for one of every 15 deaths in the USA. We investigated the association of polymorphisms in the soluble epoxide hydrolase gene (EPHX2) with incident ischemic stroke in African-Americans and Whites. Twelve single nucleotide polymorphisms (SNPs) spanning EPHX2 were genotyped in a case-cohort sample of 1336 participants from the Atherosclerosis Risk in Communities (ARIC) study. In each racial group, Cox proportional hazard models were constructed to assess the relationship between incident ischemic stroke and EPHX2 polymorphisms. A score test method was used to investigate the association of common haplotypes of the gene with risk of ischemic stroke. In African-Americans, two common EPHX2 haplotypes with significant and opposing relationships to ischemic stroke risk were identified. In Whites, two common haplotypes showed suggestive indication of an association with ischemic stroke risk but, as in African-Americans, these relationships were in opposite direction. These findings suggest that multiple variants exist within or near the EPHX2 gene, with greatly contrasting relationships to ischemic stroke incidence; some associated with a higher incidence and others with a lower incidence.

0 Followers
 · 
47 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
    11/2014; 3:282. DOI:10.12688/f1000research.5654.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Object Patients with aneurysmal subarachnoid hemorrhage (SAH) are at high risk for delayed cerebral ischemia (DCI) and stroke. Epoxyeicosatrienoic acids (EETs) play an important role in cerebral blood flow regulation and neuroprotection after brain injury. Polymorphisms in the gene for the enzyme soluble epoxide hydrolase (sEH), which inactivates EETs, are associated with ischemic stroke risk and neuronal survival after ischemia. This prospective observational study of patients with SAH compares vital and neurologic outcomes based on functional polymorphisms of sEH. Methods Allelic discrimination based on quantitative real-time polymerase chain reaction was used to differentiate wild-type sEH from K55R heterozygotes (predictive of increased sEH activity and reduced EETs) and R287Q heterozygotes (predictive of decreased sEH activity and increased EETs). The primary outcome was new stroke after SAH. Secondary outcomes were death, Glasgow Outcome Scale score, and neurological deterioration attributable to DCI. Results Multivariable logistic regression models adjusted for age at admission and Glasgow Coma Scale scores revealed an increase in the odds of new stroke (OR 5.48 [95% CI 1.51-19.91]) and death (OR 7.52 [95% CI 1.27-44.46]) in the K55R group, but no change in the odds of new stroke (OR 0.56 [95% CI 0.16-1.96]) or death (OR 3.09 [95% CI 0.51-18.52]) in patients with R287Q genotype, compared with wild-type sEH. The R287Q genotype was associated with reduced odds of having a Glasgow Outcome Scale score of ≤ 3 (OR 0.23 [95% CI 0.06-0.82]). There were no significant differences in the odds of neurological deterioration due to DCI. Conclusions Genetic polymorphisms of sEH are associated with neurological and vital outcomes after aneurysmal SAH.
    Journal of Neurosurgery 09/2014; DOI:10.3171/2014.7.JNS131990 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
    Pharmacological reviews 10/2014; 66(4):1106-1140. DOI:10.1124/pr.113.007781 · 18.55 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
May 17, 2014