Article

Mitochondrial alterations induced by 532 nm laser irradiation.

Division of Biomedical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina F1, 842 48 Bratislava 4, Slovakia.
General Physiology and Biophysics (Impact Factor: 0.88). 07/2005; 24(2):209-20.
Source: PubMed

ABSTRACT Mitochondrial alterations were monitored after low power green laser (532 nm, 30 mW) irradiation in the case of whole cells (B-14) and isolated mitochondria (from Wistar rat heart). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay products were significantly higher (by 8%) in irradiated B-14 cells as compared to non-irradiated controls. Mitochondrial transmembrane potential of B-14 cells, measured by means of a fluorescent probe 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)), significantly increased (by 13%) after exposure to green laser irradiation. Another MTT assay was used for isolated mitochondria suspensions in order to examine the effect of green laser irradiation on stimulation of processes related to oxidative phosphorylation. It revealed 31.3%-increase in MTT assay products in irradiated mitochondria as compared to controls. Laser irradiation of isolated mitochondria suspension did not significantly change 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, indicating that mitochondrial membrane fluidity was not affected by laser light. Fluorescence emission spectra of irradiated as well as non-irradiated mitochondria suspensions showed fluorescence maximum at 635 nm, corresponding to emission of Protoporphyrin IX, which was significantly lower (by 20.7%) in irradiated sample.

Download full-text

Full-text

Available from: Tomasz Przygodzki, Jun 29, 2015
1 Follower
 · 
143 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of electrical stimulation and low-intensity laser (LIL) energy on the mitochondrial function of cultured C2C12 myotubes in order to find a dosage that could be used to improve the function of mitochondria, and then rehabilitate exercise-induced damage and fatigue. Background Data: Many other studies in the past demonstrated that LIL had a cytoprotective effect, and a recent study also found that LIL could reduce muscular fatigue during tetanic contractions in rats. Cultured C2C12 myotubes were subjected to electrical stimulation or/and LIL irradiation at various intensities. Reactive oxygen species (ROS) were detected with a fluorescent probe (DCFH-DA) and mitochondrial function was assessed with an MTT assay. The results showed that electrical stimulation at 20 ms, 5 Hz, and 45 V for 75 min can induce mitochondrial dysfunction in cultured C2C12 myotubes. Electrical stimulation-induced mitochondrial dysfunction was improved, but degeneration occurred with LIL at doses of 0.33-8.22 and 11.22-14.16 J/cm2, respectively, and these changes were markedly increased with LIL at 0.33 and 1.34 J/cm2, respectively. We conclude that treatment of myotubes with the proper dosage of LIL irradiation significantly diminished production of ROS and restored mitochondrial function, and this may provide a foundation for the use of photobiomodulation to treat exercise-induced mitochondrial dysfunction or skeletal muscular fatigue.
    Photomedicine and Laser Surgery 07/2008; 26(3):197-202. DOI:10.1089/pho.2007.2125 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low power laser irradiation (LPLI) promotes proliferation of multiple cells, which (especially red and near infrared light) is mainly through the activation of mitochondrial respiratory chain and the initiation of cellular signaling. Recently, the signaling proteins involved in LPLI-induced proliferation merit special attention, some of which are regulated by mitochondrial signaling. Hepatocyte growth factor receptor (c-Met), a member of tyrosine protein kinase receptors (TPKR), is phosphorylated during LPLI-induced proliferation, but tumor necrosis factor alpha (TNF-alpha) receptor has not been affected. Activated TPKR could activate its downstream signaling elements, like Ras/Raf/MEK/ERK, PI3K/Akt/eIF4E, PI3K/Akt/eNOS and PLC-gamma/PKC pathways. Other two pathways, DeltaPsim/ATP/cAMP/JNK/AP-1 and ROS/Src, are also involved in LPLI-induced proliferation. LPLI-induced cell cycle progression can be regulated by the activation or elevated expressions of cell cycle-specific proteins. Furthermore, LPLI induces the synthesis or release of many molecules, like growth factors, interleukins, inflammatory cytokines and others, which are related to promotive effects of LPLI.
    Journal of Biomedical Science 02/2009; 16(1):4. DOI:10.1186/1423-0127-16-4 · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of phototherapy using low-level lasers depend on irradiation parameters and the type of laser used. The aim of the present study was to evaluate the effect of phototherapy on the proliferation of cultured C2C12 myoblasts under different nutritional conditions using low-level GaAlAs and InGaAlP lasers with different parameters and incubation periods. C2C12 cells cultured in regular and nutrient-deficient medium were irradiated with low-level GaAlAs (780 nm) and InGaA1P (660 nm) lasers with energy densities of 3.8, 6.3 and 10 J/cm2, and 3.8, 10 and 17.5 J/cm2, respectively. Cell proliferation was assessed 48 and 72 h after irradiation by MTT assay. There were no significant differences in cell proliferation between laser-treated myoblasts and control cultures for any of the parameters and incubation periods. Further studies are necessary to determine the correct laser parameters for optimizing the biostirhulation of myoblasts.
    Indian journal of experimental biology 06/2011; 49(6):423-8. · 0.75 Impact Factor