Article

The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans.

Cognitive Neuroscience Laboratory, Department of Psychology, Royal Holloway University of London, UK.
Cerebral Cortex (Impact Factor: 8.31). 07/2006; 16(6):811-8. DOI: 10.1093/cercor/bhj024
Source: PubMed

ABSTRACT The cortico-ponto-cerebellar system is one of the largest projection systems in the primate brain, but in the human brain the nature of the information processing in this system remains elusive. Determining the areas of the cerebral cortex which contribute projections to this system will allow us to better understand information processing within it. Information from the cerebral cortex is conveyed to the cerebellum by topographically arranged fibres in the cerebral peduncle - an important fibre system in which all cortical outputs spatially converge on their way to the cerebellum via the pontine nuclei. Little is known of their anatomical organization in the human brain. New in vivo diffusion imaging and probabilistic tractography methods now offer a way in which input tracts in the cerebral peduncle can be characterized in detail. Here we use these methods to contrast their organization in humans and macaque monkeys. We confirm the dominant contribution of the cortical motor areas to the macaque monkey cerebral peduncle. However, we also present novel anatomical evidence for a relatively large prefrontal contribution to the human cortico-ponto-cerebellar system in the cerebral peduncle. These findings suggest the selective evolution of prefrontal inputs to the human cortico-ponto-cerebellar system.

1 Follower
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel approach - DTI-based Fiber Tract-driven Topographical Mapping (FTTM) - to map and measure the influence of age on the integrity of interhemispheric fibers and challenge their selective functions with measures of interhemispheric integration of lateralized information. This approach enabled identification of spatially specific topographical maps of scalar diffusion measures and their relation to measures of visuomotor performance. Relative to younger adults, older adults showed lower fiber integrity indices in anterior than posterior callosal fibers. FTTM analysis identified a dissociation in the microstructural-function associates between age groups: in younger adults, genu fiber integrity correlated with interhemispheric transfer time, whereas in older adults, body fiber integrity was correlated with interhemispheric transfer time with topographical specificity along left-lateralized callosal fiber trajectories. Neural co-activation from redundant targets was evidenced by fMRI-derived bilateral extrastriate cortex activation in both groups, and a group difference emerged for a pontine activation cluster that was differently modulated by response hand in older and younger adults. Bilateral processing advantages in older but not younger adults further correlated with fiber integrity in transverse pontine fibers that branch into the right cerebellar cortex, thereby supporting a role for the pons in interhemispheric facilitation. In conclusion, in the face of compromised anterior callosal fibers, older adults appear to use alternative pathways to accomplish visuomotor interhemispheric information transfer and integration for lateralized processing. This shift from youthful associations may indicate recruitment of compensatory mechanisms involving medial corpus callosum fibers and subcortical pathways.
    NeuroImage 04/2013; 77. DOI:10.1016/j.neuroimage.2013.03.056 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basal ganglia and the cerebellum are anatomically and functionally linked to the cerebral cortex through a series of well-established circuits. The disruption of dopaminergic projections in Parkinson's disease (PD) leads to an imbalance within these circuits, leading to motor and cognitive symptoms. The cortico-cerebellar (CC) network has often been viewed as a compensatory network, helping the dysfunction of the cortico-basal ganglia (CBG) circuits in PD. However, evidence for this compensatory role is scarce; most changes in cerebellar activity could equally be attributed to pathophysiological changes underlying PD. This paper will review the anatomy, interaction and function of the CBG and CC circuits, the pathophysiological, metabolic, and functional changes observed in PD, as well as the effect of levodopa and deep brain stimulation on these changes. We will use this framework to discuss the pathophysiological and compensatory mechanisms behind CBG and CC circuit activity in PD. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
    Behavioral Neuroscience 12/2012; 127(2). DOI:10.1037/a0031226 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cerebellum is believed to play an essential role in a variety of motor and cognitive functions through reciprocal interaction with the cerebral cortex. Recent findings suggest that cerebellar involvement in the network specialized for visual body motion processing may be mediated through interaction with the right superior temporal sulcus (STS). Yet, the underlying pattern of structural connectivity between the STS and the cerebellum remains unidentified. In the present work, diffusion tensor imaging analysis on seeds derived from functional magnetic resonance imaging during a task on point-light biological motion perception uncovers a structural pathway between the right posterior STS and the left cerebellar lobule Crus I. The findings suggest existence of a structural loop underpinning bidirectional communication between the STS and cerebellum. This connection might also be of potential value for other visual social abilities.
    Cerebral Cortex 11/2012; DOI:10.1093/cercor/bhs346 · 8.31 Impact Factor

Narender Ramnani