Article

Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice.

Department of Carcinogenesis and Oncogerontology, N.N.Petrov Research Institute of Oncology, Pesochny-2, St Petersburg 197758, Russian Federation.
Experimental Gerontology (Impact Factor: 3.53). 08/2005; 40(8-9):685-93. DOI: 10.1016/j.exger.2005.07.007
Source: PubMed

ABSTRACT Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include DAF-2 and InR and their homologues in mammals, and inactivation of the corresponding genes is followed by increased life span in nematodes, fruit flies and mice. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. The chronic treatment of female transgenic HER-2/neu mice with metformin (100 mg/kg in drinking water) slightly decreased the food consumption but failed in reducing the body weight or temperature, slowed down the age-related rise in blood glucose and triglycerides level, as well as the age-related switch-off of estrous function, prolonged the mean life span by 8% (p < 0.05), the mean life span of last 10% survivors by 13.1%, and the maximum life span by 1 month in comparison with control mice. The demographic aging rate represented by the estimate of respective Gompertz's parameter was decreased 2.26 times. The metformin-treatment significantly decreased the incidence and size of mammary adenocarcinomas in mice and increased the mean latency of the tumors.

0 Bookmarks
 · 
146 Views
  • Source
    Obesity and metabolism. 09/2011;
  • Progress in Biochemistry and Biophysics 09/2010; 37(9):932-938. · 0.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin receptors, IGF-1 receptors, sirtuin activators, inhibitors of mTOR, and polyamines. In the current review we discuss progress made involving these various strategies and comment on the status and future for each within this exciting research field.
    Ageing Research Reviews 12/2014; · 7.63 Impact Factor

Full-text

Download
39 Downloads
Available from
May 26, 2014