Article

Unbalanced placental expression of imprinted genes in human intrauterine growth restriction.

Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA.
Placenta (Impact Factor: 3.29). 06/2006; 27(6-7):540-9. DOI: 10.1016/j.placenta.2005.07.004
Source: PubMed

ABSTRACT Imprinted genes control fetal and placental growth in mice and in rare human syndromes, but the role of these genes in sporadic intrauterine growth restriction (IUGR) is less well-studied. We measured the ratio of mRNA from a maternally expressed imprinted gene, PHLDA2, to that from a paternally expressed imprinted gene, MEST, by Northern blotting in 38 IUGR-associated placentae and 75 non-IUGR placentae and found an increase in the PHLDA2/MEST mRNA ratio in IUGR (p=0.0001). Altered expression of PHLDA2 and MEST was not accompanied by changes in DNA methylation within their imprinting centers, and immunohistochemistry showed PHLDA2 protein appropriately restricted to villous and intermediate cytotrophoblast in the IUGR placentae. We next did a genome-wide survey of mRNA expression in 14 IUGR placentae with maternal vascular under-perfusion compared to 15 non-IUGR placentae using Affymetrix U133A microarrays. In this series six imprinted genes were differentially expressed by ANOVA with a Benjamini-Hochberg false discovery rate of 0.05, with increased expression of PHLDA2 and decreased expression of MEST, MEG3, GATM, GNAS and PLAGL1 in IUGR placentae. At lower significance, we found IGF2 mRNA decreased and CDKN1C mRNA increased in the IUGR cases. We confirmed the significant reduction in MEG3 non-translated RNA in IUGR placentae by Northern blotting. In addition to imprinted genes, the microarray data highlighted non-imprinted genes acting in endocrine signaling (LEP, CRH, HPGD, INHBA), tissue growth (IGF1), immune modulation (INDO, PSG-family genes), oxidative metabolism (GLRX), vascular function (AGTR1, DSCR1) and metabolite transport (SLC-family solute carriers) as differentially expressed in IUGR vs. non-IUGR placentae.

0 Bookmarks
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
    Philosophical Transactions of The Royal Society B Biological Sciences 03/2015; 370(1663). DOI:10.1098/rstb.2014.0074 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle.
    Epigenetics: official journal of the DNA Methylation Society 10/2014; 9(10):1397-409. DOI:10.4161/15592294.2014.970052 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Is gene expression in placental tissue of IVF/ICSI patients altered when compared with a spontaneously conceived group, and are these alterations due to loss of imprinting (LOI) in the case of imprinted genes?
    Human Reproduction 10/2014; 29(12). DOI:10.1093/humrep/deu241 · 4.59 Impact Factor