Unbalanced placental expression of imprinted genes in human intrauterine growth restriction.

Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA.
Placenta (Impact Factor: 3.29). 06/2006; 27(6-7):540-9. DOI: 10.1016/j.placenta.2005.07.004
Source: PubMed

ABSTRACT Imprinted genes control fetal and placental growth in mice and in rare human syndromes, but the role of these genes in sporadic intrauterine growth restriction (IUGR) is less well-studied. We measured the ratio of mRNA from a maternally expressed imprinted gene, PHLDA2, to that from a paternally expressed imprinted gene, MEST, by Northern blotting in 38 IUGR-associated placentae and 75 non-IUGR placentae and found an increase in the PHLDA2/MEST mRNA ratio in IUGR (p=0.0001). Altered expression of PHLDA2 and MEST was not accompanied by changes in DNA methylation within their imprinting centers, and immunohistochemistry showed PHLDA2 protein appropriately restricted to villous and intermediate cytotrophoblast in the IUGR placentae. We next did a genome-wide survey of mRNA expression in 14 IUGR placentae with maternal vascular under-perfusion compared to 15 non-IUGR placentae using Affymetrix U133A microarrays. In this series six imprinted genes were differentially expressed by ANOVA with a Benjamini-Hochberg false discovery rate of 0.05, with increased expression of PHLDA2 and decreased expression of MEST, MEG3, GATM, GNAS and PLAGL1 in IUGR placentae. At lower significance, we found IGF2 mRNA decreased and CDKN1C mRNA increased in the IUGR cases. We confirmed the significant reduction in MEG3 non-translated RNA in IUGR placentae by Northern blotting. In addition to imprinted genes, the microarray data highlighted non-imprinted genes acting in endocrine signaling (LEP, CRH, HPGD, INHBA), tissue growth (IGF1), immune modulation (INDO, PSG-family genes), oxidative metabolism (GLRX), vascular function (AGTR1, DSCR1) and metabolite transport (SLC-family solute carriers) as differentially expressed in IUGR vs. non-IUGR placentae.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle.
    Epigenetics: official journal of the DNA Methylation Society 10/2014; 9(10):1397-409. · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Is gene expression in placental tissue of IVF/ICSI patients altered when compared with a spontaneously conceived group, and are these alterations due to loss of imprinting (LOI) in the case of imprinted genes?
    Human Reproduction 10/2014; · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Size at birth, postnatal weight gain, and adult risk for type 2 diabetes may reflect environmental exposures during developmental plasticity and may be mediated by epigenetics. Both low birth weight (BW), as a marker of fetal growth restraint, and high birth weight (BW), especially after gestational diabetes mellitus (GDM), have been linked to increased risk of adult type 2 diabetes. We assessed DNA methylation patterns using a bead chip in cord blood samples from infants of mothers with GDM (group 1) and infants with prenatal growth restraint indicated by rapid postnatal catch-up growth (group 2), compared with infants with normal postnatal growth (group 3). Seventy-five CpG loci were differentially methylated in groups 1 and 2 compared with the controls (group 3), representing 72 genes, many relevant to growth and diabetes. In replication studies using similar methodology, many of these differentially methylated regions were associated with levels of maternal glucose exposure below that defined by GDM [the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study] or were identified as changes observed after randomized periconceptional nutritional supplementation in a Gambian cohort characterized by maternal deprivation. These studies provide support for the concept that similar epigenetic modifications may underpin different prenatal exposures and potentially increase long-term risk for diseases such as type 2 diabetes.-Quilter, C. R., Cooper, W. N., Cliffe, K. M., Skinner, B. M., Prentice, P. M., Nelson, L., Bauer, J., Ong, K. K., Constância, M., Lowe, W. L., Affara, N. A., Dunger, D. B. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk.
    The FASEB Journal 08/2014; · 5.48 Impact Factor