Phosphorylation of the Brn-3a transcription factor is modulated during differentiation and regulates its functional activity

MMBU, Institute of Child Health, 30 Guilford Street, WC1N 1EH London, UK.
Molecular Brain Research (Impact Factor: 2). 12/2005; 141(1):10-8. DOI: 10.1016/j.molbrainres.2005.07.013
Source: PubMed


Brn-3a is a transcription factor expressed in a subset of neurons of the peripheral nervous system. Its role encompasses the activation of genes involved in neuronal differentiation and survival. While a lot of data have been produced on Brn-3a target promoters, very little is known about the upstream regulatory signals that mediate its activation in response to differentiation. In this work, we describe for the first time that Brn-3a is phosphorylated in IMR-32 neuroblastoma cells in response to differentiation induced by retinoic acid treatment and that its post-translational modification is potentially mediated by the activation of the MAPK/ERK pathway. Furthermore, we show that the mutation of a putative phosphorylated amino acid strongly reduces the ability of Brn-3a to mediate the differentiation of IMR-32 cells.

0 Reads
  • Source
    • "Flag-Brn-3aL-WT, Flag-Brn-3aL-S121A, Flag-Brn-3aL-S122A and Flag-Brn-3aL-S121A/S122A are described (Calissano et al., 2005). Flag-Brn-3aL-T39A was made by site-directed mutagenesis of Flag-Brn-3aL-WT to create an ACG → GCG point mutation using a Stratagene QuikChange Mutagenesis kit (Stratagene, TX, USA). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The POU family transcription factor Brn-3a is required for the differentiation and survival of sensory neurones, and is phosphorylated in neuroblastoma cells following treatment with all-trans retinoic acid (RA). Mutation of serines-121 and -122 of Brn-3a to alanine blocks its phosphorylation and impairs RA-mediated neurite outgrowth. Here we show that this deficit in differentiation is mimicked by a single mutation at serine-122, and demonstrate a similar requirement for a second residue, threonine-39. Like Brn-3a, the neuropeptide Galanin has been implicated in the development of sensory neurones. We show that Brn-3a over-expression acts synergistically with RA treatment to up-regulate Galanin promoter activity; that the activity of the N-terminal transcriptional activation domain of Brn-3a is increased following RA treatment; and that both these effects require threonine-39 and serine-122. In addition, we demonstrate that the RA-mediated activation of Galanin promoter activity and Brn-3a N-terminal transcriptional activity are both blocked by pan-MEK inhibitors, and show that the expression of a constitutively-active mutant of MEK1, but not MEK5, is sufficient to increase Brn-3a activity. These results reveal an important role for the ERK1/2 pathway in Brn-3a regulation during RA-mediated neuronal differentiation and define the neuropeptide Galanin as a novel target of this transcription factor.
    Brain research 02/2009; 1256:8-18. DOI:10.1016/j.brainres.2008.12.009 · 2.84 Impact Factor
  • Source
    • "Nevertheless, two minor bands were detected running slower than both the main Brn-3a(l) and Brn-3a(s) bands. These are believed to be due to post-translational phosphorylation of Brn-3a, as ongoing work suggests that several sites within both the N-terminal and POU domains are phosphorylated (see for instance Calissano et al. 2005). Brn-3a(l) was also expressed in adult rat heart or freshly isolated adult cardiomyocytes (Fig. 1b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5-10.5 (E9.5-E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a-/- mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation.
    Cell Stress and Chaperones 04/2008; 13(3):297-312. DOI:10.1007/s12192-008-0028-2 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N Oct-3, a transcription factor member of the POU protein family, is implicated in normal central nervous system development but also in melanoma growth. Its DNA-binding domain (DBD) comprises two subdomains, POUs and POUh, joined by a linker peptide. We have previously shown that N Oct-3 can interact with the already described PORE and MORE DNA motifs, but also with a new structural element we have termed NORE. Having observed that both the PORE and NORE DNA-association modes depend on a strong anchoring of the POUh subdomain rigid arm into the DNA-target minor groove, in contrast to the MORE mode, we have formulated the hypothesis that phosphorylation of the conserved Ser101 residue located in the N Oct-3 POUh arm could lead to differential results in DNA binding according to the type of target. Here we demonstrate that, in vitro, Ser101 is phosphorylated by protein kinase A (PKA), either purified or contained in melanoma (624 mel) nuclear extract, and that this phosphorylation indeed significantly reduced N Oct-3 DBD binding to PORE and NORE motifs, most likely by hampering the POUh rigid arm insertion in the DNA minor groove. Conversely, no effect was observed on the binding of N Oct-3 DBD to MORE sequences. Finally, once bound to its DNA targets, N Oct-3 DBD is less susceptible to PKA activity. We conclude that transcription of genes exhibiting a MORE motif in their promoter should be less affected by N Oct-3 phosphorylation than that of genes switched on by PORE or NORE sequences.
    Journal of Molecular Biology 08/2007; 370(4):687-700. DOI:10.1016/j.jmb.2007.04.072 · 4.33 Impact Factor
Show more