Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique.

Departamento de Matemáticas, Facultad de Ciencias, UNAM 04510 México, D.F., Mexico.
Mathematical Biosciences (Impact Factor: 1.49). 01/2006; 198(2):132-47. DOI: 10.1016/j.mbs.2005.06.004
Source: PubMed

ABSTRACT We propose a mathematical model to assess the effects of irradiated (or transgenic) male insects introduction in a previously infested region. The release of sterile male insects aims to displace gradually the natural (wild) insect from the habitat. We discuss the suitability of this release technique when applied to peri-domestically adapted Aedes aegypti mosquitoes which are transmissors of Yellow Fever and Dengue disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anthropophilic and peridomestic female Aedes aegypti bites humans to suck blood to matu-rate fertilized eggs, which are laid in appropriate recipients (breeding sites). These eggs can hatch in contact with water releasing larvae, or can be stored in a dormant state (quiescence), which last for extended periods. Taking into account this ability of eggs of A. aegypti mosquitoes, mathemat-ical model is developed taking into account four successive quiescence stages. The analysis of the model shows that the ability of the eggs surviving in dormant state in adverse abiotic conditions, depending on the model parameters, can increase the fitness of mosquito population; in other words, the capacity of the mosquitoes generating offsprings is increased.
    Applied Mathematics 10/2014; 5(17):2696-2711. · 0.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a new eco-epidemiological deterministic delay differential equation model considering a biological controlling approach on mosquitoes, for endemic dengue disease with variable host (human) and variable vector (Aedes aegypti) populations, and stage structure for mosquitoes. In this model, predator-prey interaction is considered by using larvae as prey and mosquito-fish as predator. We give a complete classification of equilibria of the model, and sufficient conditions for global stability/global attractivity of some equilibria are given by constructing suitable Lyapunov functionals and using Lyapunov-LaSalle invariance principle. Also, numerical simulations are presented to show the validity of our results.
    Electronic Journal of Differential Equations 01/2015; 2015 (2015)(10):1. · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To prevent the transmissions of malaria, dengue fever, or other mosquito-borne diseases, one effective weapon is the sterile insect technique in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population. To study the impact of the sterile insect technique on disease transmission, we formulate discrete-time mathematical models, based on difference equations, for the interactive dynamics of the wild and sterile mosquitoes, incorporating different strategies in releasing sterile mosquitoes. We investigate the model dynamics and compare the impact of the different release strategies. Numerical examples are given to demonstrate rich dynamical features of the models.
    Journal of Biological Dynamics 12/2015; 9(1):1-14.


Available from
May 29, 2014