Article

G Protein betagamma dimer formation: Gbeta and Ggamma differentially determine efficiency of in vitro dimer formation.

Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
Biochemistry (Impact Factor: 3.19). 10/2005; 44(35):11882-90. DOI: 10.1021/bi0504254
Source: PubMed

ABSTRACT The Gbeta and Ggamma subunit of the heterotrimeric G proteins form a functional dimer that is stable once assembled in vivo or in vitro. The requirements, mechanism, and specificity of dimer formation are still incompletely understood, but represent important biochemical processes involved in the specificity of cellular signaling through G proteins. Here, seven Gbeta and 12 FLAG-epitope-tagged Ggamma subunits were separately synthesized in vitro using a rabbit reticulocyte lysate expression system. The translation products were combined and dimers isolated by immunoprecipitation. Gbeta1 and Gbeta4 formed dimers with all Ggamma subunit isoforms, generally with Gbeta/Ggamma stoichiometries between 0.2:1 and 0.5:1. Gbeta5, Gbeta5L, and Gbeta3s did not form significant amounts of dimer with any of the gamma subunit isoforms. Gbeta2 and Gbeta3 formed dimers with selected Ggamma isoforms to levels intermediate between that of Gbeta1/Gbeta4 and Gbeta3s/Gbeta5/Gbeta5L. We also expressed selected Gbetagamma in HEK293 cells and measured PLCbeta2 activity. Gbetagamma dimer-dependent increases in IP3 production were seen with most Gbeta1, Gbeta2, and Gbeta5 combinations, indicating functional dimer expression in intact cells. These results define the complete set of G protein betagamma dimers that are formed using a single biochemical assay method and suggest that there are Gbeta isoform-specific factors in rabbit reticulocyte lysates that determine the efficacy of Gbetagamma dimer formation.

0 Followers
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The specificity of G protein betagamma signaling demonstrated by in vivo knockouts is greater than expected based on in vitro assays of betagamma function. In this study, we investigated the basis for this discrepancy by comparing the abilities of seven beta1gamma complexes containing gamma1, gamma2, gamma5, gamma7, gamma10, gamma11, or gamma12 to interact with alphas and of these gamma subunits to compete for interaction with beta1 in live human embryonic kidney (HEK) 293 cells. betagamma complexes were imaged using bimolecular fluorescence complementation, in which fluorescence is produced by two nonfluorescent fragments (N and C) of cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) when brought together by proteins fused to each fragment. Plasma membrane targeting of alphas-CFP varied inversely with its expression level, and the abilities of YFP-N-beta1YFP-C-gamma complexes to increase this targeting varied by 2-fold or less. However, there were larger differences in the abilities of the CFP-N-gamma subunits to compete for association with CFP-C-beta1. When the intensities of coexpressed CFP-C-beta1CFP-N-gamma (cyan) and CFP-C-beta1YFP-N-gamma2 (yellow) complexes were compared under conditions in which CFP-C-beta1 was limiting, the CFP-N-gamma subunits exhibited a 4.5-fold range in their abilities to compete with YFP-N-gamma2 for association with CFP-C-beta1. CFP-N-gamma12 and CFP-N-gamma1 were the strongest and weakest competitors, respectively. Taken together with previous demonstrations of a role for betagamma in the specificity of receptor signaling, these results suggest that differences in the association preferences of coexpressed beta and gamma subunits for each other can determine which complexes predominate and participate in signaling pathways in intact cells.
    Molecular Pharmacology 08/2006; 70(1):194-205. DOI:10.1124/mol.106.022616 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent molecular mass (approximately 700 kDa) and co-migrated with the chaperonin CCT complex (also called TRiC). Different FLAG-Gbeta isoforms coprecipitated CCT/TRiC to a variable extent, and this correlated with the ability of the different Gbeta subunits to efficiently form dimers with Ggamma. When translated Ggamma was added to translated Gbeta, a new band of low apparent molecular mass (approximately 50 kDa) was observed, which was labeled by either (35)S-labeled Gbeta or Ggamma, indicating that it is a dimer. Formation of the Gbetagamma dimer was ATP-dependent and inhibited by either adenosine 5'-O-(thiotriphosphate) or aluminum fluoride in the presence of Mg(2+). This inhibition led to increased association of Gbeta with CCT/TRiC. Although Ggamma did not bind CCT/TRiC, addition of Ggamma to previously synthesized Gbeta caused its release from the CCT/TRiC complex. We conclude that the chaperonin CCT/TRiC complex binds to and folds Gbeta subunits and that CCT/TRiC mediates Gbetagamma dimer formation by an ATP-dependent reaction.
    Journal of Biological Chemistry 08/2006; 281(29):20221-32. DOI:10.1074/jbc.M602409200 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ggamma11 is an unusual guanine nucleotide-binding regulatory protein (G protein) subunit. To study the effect of different Gbeta-binding partners on gamma11 function, four recombinant betagamma dimers, beta1gamma2, beta4gamma2, beta1gamma11, and beta4gamma11, were characterized in a receptor reconstitution assay with the G(q)-linked M1 muscarinic and the G(i1)-linked A1 adenosine receptors. The beta4gamma11 dimer was up to 30-fold less efficient than beta4gamma2 at promoting agonist-dependent binding of [35S]GTPgammaS to either alpha(q) or alpha(i1). Using a competition assay to measure relative affinities of purified betagamma dimers for alpha, the beta4gamma11 dimer had a 15-fold lower affinity for G(i1) alpha than beta4gamma2. Chromatographic characterization of the beta4gamma11 dimer revealed that the betagamma is stable in a heterotrimeric complex with G(i1) alpha; however, upon activation of alpha with MgCl2 and GTPgammaS under nondenaturing conditions, the beta4 and gamma11 subunits dissociate. Activation of purified G(i1) alpha:beta4gamma11 with Mg+2/GTPgammaS following reconstitution into lipid vesicles and incubation with phospholipase C (PLC)-beta resulted in stimulation of PLC-beta activity; however, when this activation preceded reconstitution into vesicles, PLC-beta activity was markedly diminished. In a membrane coupling assay designed to measure the ability of G protein to promote a high-affinity agonist-binding conformation of the A1 adenosine receptor, beta4gamma11 was as effective as beta4gamma2 when coexpressed with G(i1) alpha and receptor. However, G(i1) alpha:beta4gamma11-induced high-affinity binding was up to 20-fold more sensitive to GTPgammaS than G(i1) alpha:beta4gamma2-induced high-affinity binding. These results suggest that the stability of the beta4gamma11 dimer can modulate G protein activity at the receptor and effector.
    Biochemistry 10/2006; 45(38):11616-31. DOI:10.1021/bi0604882 · 3.19 Impact Factor