A network-based analysis of systemic inflammation in humans

Harvard University, Cambridge, Massachusetts, United States
Nature (Impact Factor: 42.35). 11/2005; 437(7061):1032-7. DOI: 10.1038/nature03985
Source: PubMed

ABSTRACT Oligonucleotide and complementary DNA microarrays are being used to subclassify histologically similar tumours, monitor disease progress, and individualize treatment regimens. However, extracting new biological insight from high-throughput genomic studies of human diseases is a challenge, limited by difficulties in recognizing and evaluating relevant biological processes from huge quantities of experimental data. Here we present a structured network knowledge-base approach to analyse genome-wide transcriptional responses in the context of known functional interrelationships among proteins, small molecules and phenotypes. This approach was used to analyse changes in blood leukocyte gene expression patterns in human subjects receiving an inflammatory stimulus (bacterial endotoxin). We explore the known genome-wide interaction network to identify significant functional modules perturbed in response to this stimulus. Our analysis reveals that the human blood leukocyte response to acute systemic inflammation includes the transient dysregulation of leukocyte bioenergetics and modulation of translational machinery. These findings provide insight into the regulation of global leukocyte activities as they relate to innate immune system tolerance and increased susceptibility to infection in humans.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human injury or infection induces systemic inflammation with characteristic neuro-endocrine responses. Fluctuations in autonomic function during inflammation are reflected by beat-to-beat variation in heart rate, termed heart rate variability (HRV). In the present study, we determine threshold doses of endotoxin needed to induce observable changes in markers of systemic inflammation, we investigate whether metrics of HRV exhibit a differing threshold dose from other inflammatory markers, and we investigate the size of data sets required for meaningful use of multi-scale entropy (MSE) analysis of HRV. Healthy human volunteers (n=25) were randomized to receive placebo (normal saline) or endotoxin/lipopolysaccharide (LPS): 0.1, 0.25, 0.5, 1.0, or 2.0ng/kg administered intravenously. Vital signs were recorded every 30 minutes for 6 hours and then at 9, 12, and 24 hours after LPS. Blood samples were drawn at specific time points for cytokine measurements. HRV analysis was performed using EKG epochs of 5 minutes. MSE for HRV was calculated for all dose groups to scale factor 40. The lowest significant threshold dose was noted in core temperature at 0.25ng/kg. Endogenous TNF-α and IL-6 were significantly responsive at the next dosage level (0.5ng/kg) along with elevations in circulating leukocytes and heart rate. Responses were exaggerated at higher doses (1 and 2ng/kg). Time domain and frequency domain HRV metrics similarly suggested a threshold dose, differing from placebo at 1.0 and 2.0ng/kg, below which no clear pattern in response was evident. By applying repeated-measures ANOVA across scale factors, a significant decrease in MSE was seen at 1.0 and 2.0ng/kg by 2 hours post exposure to LPS. While not statistically significant below 1.0 ng/kg, MSE unexpectedly decreased across all groups in an orderly dose-response pattern not seen in the other outcomes. By using rANOVA across scale factors, MSE can detect autonomic change after LPS challenge in a group of 25 subjects using EKG epochs of only 5 minutes and entropy analysis to scale factor of only 40, potentially facilitating MSE's wider use as a research tool or bedside monitor. Traditional markers of inflammation generally exhibit threshold dose behavior. In contrast, MSE's apparent continuous dose-response pattern, while not statistically verifiable in this study, suggests a potential subclinical harbinger of infectious or other insult. The possible derangement of autonomic complexity prior to or independent of the cytokine surge cannot be ruled out. Future investigation should focus on confirmation of overt inflammation following observed decreases in MSE in a clinical setting.
    Shock (Augusta, Ga.) 12/2014; 43(2). DOI:10.1097/SHK.0000000000000276 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We employed next-generation RNA sequencing (RNA-Seq) technology to determine the influence of obesity on global gene expression in skeletal muscle feed arteries. Transcriptional profiles of the gastrocnemius and soleus muscle feed arteries (GFA and SFA, respectively) and aortic endothelial cell-enriched samples from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats were examined. Obesity produced 282 upregulated and 133 downregulated genes in SFA and 163 upregulated and 77 downregulated genes in GFA [false discovery rate (FDR) < 10%] with an overlap of 93 genes between the arteries. In LETO rats, there were 89 upregulated and 114 downregulated genes in the GFA compared with the SFA. There were 244 upregulated and 275 downregulated genes in OLETF rats (FDR < 10%) in the GFA compared with the SFA, with an overlap of 76 differentially expressed genes common to both LETO and OLETF rats in both the GFA and SFA. A total of 396 transcripts were found to be differentially expressed between LETO and OLETF in aortic endothelial cell-enriched samples. Overall, we found 1) the existence of heterogeneity in the transcriptional profile of the SFA and GFA within healthy LETO rats, 2) that this between-vessel heterogeneity was markedly exacerbated in the hyperphagic, obese OLETF rat, and 3) a greater number of genes whose expression was altered by obesity in the SFA compared with the GFA. Also, results indicate that in OLETF rats the GFA takes on a relatively more proatherogenic phenotype compared with the SFA.
    Journal of Applied Physiology 04/2014; 116(8):1017-1032. DOI:10.1152/japplphysiol.01233.2013 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD.Methods We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30¿±¿3.6%pred, FFMI 15¿±¿0.2 Kg.m¿2) with patients with COPD and normal FFMI (COPDN) (FEV1 44¿±¿5.8%pred, FFMI 19¿±¿0.5 Kg.m¿2) and a group of age and sex matched healthy controls (C) (FEV1 95¿±¿3.9%pred, FFMI 20¿±¿0.8 Kg.m¿2) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting.ResultsA subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP¿<¿0.05; ¿1.5¿¿¿FC¿¿¿1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL.Conclusions This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.
    Respiratory Research 01/2015; 16(1):1. DOI:10.1186/s12931-014-0139-5 · 3.13 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014