Article

Time to death, airway wall inflammation and remodelling in fatal asthma

Sir Charles Gairdner Hospital, Perth City, Western Australia, Australia
European Respiratory Journal (Impact Factor: 7.13). 10/2005; 26(3):429-34. DOI: 10.1183/09031936.05.00146404
Source: PubMed

ABSTRACT Fatal asthma is characterised pathologically by airway wall remodelling, eosinophil and neutrophil infiltration, accumulation of mucus in the airway lumen and smooth muscle shortening. The durations of fatal attacks of asthma show a clear bimodal distribution. Airway smooth muscle contraction and the accumulation of luminal mucus may contribute to death from asthma and relate to time to death. The current authors have examined these two components in uninflated lung tissue in cases of fatal asthma from the second Victorian asthma mortality study. Based on time from onset of symptoms to death, cases fell into two distinct groups: short course <3 (1.5+/-0.6 mean+/-sd) h; and long course >8 (12.3+/-5.9) h. Short course cases had more muscle shortening, higher levels of salbutamol and higher ratios of neutrophils to eosinophils than long course cases, who tended to have more mucus in the lumen. In conclusion, this study confirms the dichotomy of both time to death and the eosinophil/neutrophil ratio in cases of fatal asthma. It suggests that in short course cases acute airway narrowing is due, predominantly, to bronchoconstriction despite higher blood levels of salbutamol. Mucus accumulation may be more important in long course cases.

0 Followers
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory infection is a common feature of the major human airway diseases, such as asthma and chronic obstructive pulmonary disease, but the precise link between acute infection and chronic lung disease is still undefined. In a mouse model of this process, parainfluenza virus infection is followed by long-term induction of IL-33 expression and release and in turn innate immune cell generation of IL-13 and consequent airway disease signified by excess mucus formation. IL-33 induction was traceable to a subset of secretoglobin-positive airway epithelial cells linked to progenitor/stem cell function. In corresponding studies of humans with chronic obstructive pulmonary disease, an increase in IL-33 production was also detected in concert with up-regulation of IL-13 and airway mucus formation. In this case, increased IL-33 production was localized to a subset of airway basal cells that maintain an endogenous capacity for increased pluripotency and ATP-regulated release of IL-33 even ex vivo. The results provide evidence of a sustainable epithelial cell population that may be activated by environmental danger signals to release IL-33 and thereby lead to IL-13-dependent disease. The progenitor nature of this IL-33-expressing ATP-responsive cell population could explain an acquired susceptibility to chronic airway disease. The findings may therefore provide a new paradigm to explain the role of viral infection and the innate immune system in chronic lung disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production. Further studies are needed to address the basis for this type of postviral reprogramming and the means to correct it and thereby restore airway mucosal immune function to normal.
    12/2014; 11(Supplement 5):S287-S291. DOI:10.1513/AnnalsATS.201402-056AW
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder of unknown etiology characterized by accumulation of lung fibroblasts and extracellular matrix deposition, ultimately leading to compromised tissue architecture and lung function capacity. IPF has a heterogeneous clinical course; however the median survival after diagnosis is only 3-5 years. The pharmaceutical and biotechnology industry has made many attempts to find effective treatments for IPF, but the disease has so far defied all attempts at therapeutic intervention. Clinical trial failures may arise for many reasons, including disease heterogeneity, lack of readily measurable clinical end points other than overall survival, and, perhaps most of all, a lack of understanding of the underlying molecular mechanisms of the progression of IPF. The precise link between inflammation and fibrosis remains unclear, but it appears that immune cells can promote fibrosis by releasing fibrogenic factors. So far, however, therapeutic approaches targeting macrophages, neutrophils, or lymphocytes have failed to alter disease pathogenesis. A new cell to garner research interest in fibrosis is the mast cell. Increased numbers of mast cells have long been known to be present in pulmonary fibrosis and clinically correlations between mast cells and fibrosis have been reported. More recent data suggests that mast cells may contribute to the fibrotic process by stimulating fibroblasts resident in the lung, thus driving the pathogenesis of the disease. In this review, we will discuss the mast cell and its physiological role in tissue repair and remodeling, as well as its pathological role in fibrotic diseases such as IPF, where the process of tissue repair and remodeling is thought to be dysregulated.
    Frontiers in Pharmacology 01/2013; 4:174. DOI:10.3389/fphar.2013.00174
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.
    Clinical and Molecular Allergy 02/2008; 6:3. DOI:10.1186/1476-7961-6-3 · 1.39 Impact Factor

Preview

Download
0 Downloads
Available from