Article

Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder.

Department of Psychiatry, Division of Mood and Anxiety Disorders, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
American Journal of Psychiatry (Impact Factor: 13.56). 10/2005; 162(9):1637-43. DOI: 10.1176/appi.ajp.162.9.1637
Source: PubMed

ABSTRACT In vivo imaging studies have suggested anatomical and functional abnormalities in the anterior cingulate in adults with mood disorders. This anatomical magnetic resonance imaging study examined the cingulate cortex in children and adolescents with bipolar disorder and matched healthy comparison subjects.
Sixteen patients (mean age=15.5 years, SD=3.4) with DSM-IV bipolar disorder and 21 matched healthy comparison subjects (mean age=16.9 years, SD=3.8) were studied. Three-dimensional gradient echo imaging was performed (TR=25 msec, TE=5 msec, slice thickness=1.5 mm) in a 1.5-T GE Signa magnet. Cingulate volumes were compared by using analysis of covariance, with age and intracranial volume as covariates.
The patients with bipolar disorder had significantly smaller mean volumes relative to the healthy subjects in the left anterior cingulate (mean=2.49 cm(3 [SD=0.28] versus 3.60 cm3 [SD=0.12], respectively), left posterior cingulate (2.53 cm3 [SD=0.32] versus 2.89 cm3 [SD=0.09]), and right posterior cingulate (2.19 cm3 [SD=0.13] versus 2.28 cm3 [SD=0.08]). No significant between-group difference was found for the right anterior cingulate (2.64 cm3 [SD=0.21] versus 2.71 cm3 [SD=0.10]).
The findings indicate smaller cingulate volumes in children and adolescents with bipolar disorder, suggesting that such abnormalities may be present early in the illness course.

Full-text

Available from: Paolo Brambilla, Apr 18, 2015
0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. Method: This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Results: Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r = -0.58, p < 0.001) with the GI. Conclusions: In adolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis.
    Schizophrenia Research 07/2014; 158(1-3). DOI:10.1016/j.schres.2014.06.040 · 4.43 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents.Molecular Psychiatry advance online publication, 30 April 2013; doi:10.1038/mp.2013.44.
    Molecular Psychiatry 04/2013; DOI:10.1038/mp.2013.44 · 15.15 Impact Factor