Solid-State Magic-Angle Spinning NMR of Outer-Membrane Protein G from Escherichia coli

Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
ChemBioChem (Impact Factor: 3.06). 09/2005; 6(9):1679-84. DOI: 10.1002/cbic.200500132
Source: PubMed

ABSTRACT Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein were purified under denaturing conditions and refolded in detergent. OmpG was reconstituted into lipid bilayers and several milligrams of two-dimensional crystals were obtained. Solid-state MAS NMR spectra showed signals with an apparent line width of 80-120 Hz (including homonuclear scalar couplings). Signal patterns for several amino acids, including threonines, prolines and serines were resolved and identified in 2D proton-driven spin-diffusion (PDSD) spectra.

Download full-text


Available from: Ludwig Krabben, Jun 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins of the proteorhodopsin (PR) family are found abundantly in many marine bacteria in the photic zone of the oceans. They are colour-tuned to their environment. The green absorbing species has been shown to act as a light-driven proton pump and thus could form a potential source of energy. The pK(a) of the primary proton acceptor is close to the pH of seawater which could also indicate a regulatory role. Here, we review and summarize our own recent findings in the context of known data and present some new results. Proton transfer in vitro by PR is shown by a fluorescence assay which confirms a pH dependent vectoriality. Previously reported low diffracting 2D crystal preparations of PR are assessed for their use for solid-state NMR by two dimensional (13)C-(13)C DARR spectra. (15)N-(1)H HETCOR MAS NMR experiments show bound water in the vicinity of the protonated Schiff base which could play a role in proton transfer. The effect of highly conserved H75 onto the properties of the chromophore has been investigated by single site mutations. They do show a pronounced effect onto the optical absorption maximum and the pK(a) of the proton acceptor but have only a small effect onto the (15)N chemical shifts of the protonated Schiff base.
    Biochimica et Biophysica Acta 04/2009; 1787(6):697-705. DOI:10.1016/j.bbabio.2009.02.022 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteorhodopsin (PR) a recent addition to retinal type 1 protein family, is a bacterial homologue of archaeal bacteriorhodopsin. It was found to high abundance in gamma-proteobacteria in the photic zone of the oceans and has been shown to act as a photoactive proton pump. It is therefore involved in the utilisation of light energy for energy production within the cell. Based on data from biodiversity screens, hundreds of variants were discovered worldwide, which are spectrally tuned to the available light at different locations in the sea. Here, we present a characterisation of 2D crystals of the green variant of proteorhodopsin by electron microscopy and solid state NMR. 2D crystal formation with hexagonal protein packing was observed under a very wide range of conditions indicating that PR might be also closely packed under native conditions. A low-resolution 2D projection map reveals a ring-shaped oligomeric assembly of PR. The protein state was analysed by 15N MAS NMR on lysine, tryptophan and methionine labelled samples. The chemical shift of the protonated Schiff base was almost identical to non-crystalline preparations. All residues could be cross-polarised in non-frozen samples. Lee-Goldberg cross-polarisation has been used to probe protein backbone mobility.
    Biochimica et Biophysica Acta 01/2008; 1768(12):3012-9. DOI:10.1016/j.bbamem.2007.10.001 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of deuteration on the 13C linewidths of U-13C, 15N 2D crystalline bacteriorhodopsin (bR) from Halobacterium salinarium, a 248-amino acid protein with seven-transmembrane (7TM) spanning regions, has been studied in purple membranes as a prelude to potential structural studies. Spectral doubling of resonances was observed for receptor expressed in 2H medium (for both 50:50% 1H:2H, and a more highly deuterated form) with the resonances being of similar intensities and separated by <0.3 ppm in the methyl spectral regions in which they were readily distinguished. Line-widths of the methyl side chains were not significantly altered when the protein was expressed in highly deuterated medium compared to growth in fully protonated medium (spectral line widths were about 0.5 ppm on average for receptor expressed both in the fully protonated and highly deuterated media from the C delta, C gamma 1, and C gamma 2 Ile 13C signals observed in the direct, 21-39 ppm, and indirect, 9-17 ppm, dimensions). The measured 13C NMR line-widths observed for both protonated and deuterated form of the receptor are sufficiently narrow, indicating that this crystalline protein morphology is suitable for structural studies. 1) decoupling comparison of the protonated and deuterated bR imply that deuteration may be advantageous for samples in which low power 1H decoupling is required.
    Biochimica et Biophysica Acta 12/2007; 1768(12):3029-35. DOI:10.1016/j.bbamem.2007.09.023 · 4.66 Impact Factor