Article

Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry.

Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Metabolic Engineering (Impact Factor: 8.26). 08/2005; 7(4):251-9. DOI: 10.1016/j.ymben.2005.03.002
Source: PubMed

ABSTRACT Analysis of the stoichiometric structure of metabolic networks provides insights into the relationships between structure, function, and regulation of metabolic systems. Based on knowledge of only reaction stoichiometry, certain aspects of network functionality and robustness can be predicted. Current theories focus on breaking a metabolic network down into non-decomposable pathways able to operate in steady state. The physics underlying these theories is based on mass balance and the laws of thermodynamics. However, due to the inherent nonlinearity of the thermodynamic constraints on metabolic fluxes, computational analysis of large-scale biochemical systems can be expensive. In this study, it is shown how the feasible reaction directions may be determined by either computing the allowable ranges under the mass-balance and thermodynamic constraints or by analyzing the stoichiometric structure of the network. The computed reaction directions translate into a set of linear constraints necessary for thermodynamic feasibility. This set of necessary linear constraints is shown to be sufficient to guarantee feasibility in certain cases, thus translating the nonlinear thermodynamic constraints to linear. We show that for a reaction network of 44 internal reactions representing energy metabolism, the computed linear inequality constraints represent necessary and sufficient conditions for thermodynamic feasibility.

0 Followers
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the steady-state assumption can be replaced by a weaker lattice-theoretic property related to the supports of metabolic fluxes. In this paper, we further extend our approach and develop an efficient algorithm for generic flux coupling analysis that works with any kind of qualitative pathway model. We illustrate our method by thermodynamic flux coupling analysis (tFCA), which allows studying steady-state metabolic models with loop-law thermodynamic constraints. These models do not satisfy the lattice-theoretic properties required in our previous work. For a selection of genome-scale metabolic network reconstructions, we discuss both theoretically and practically, how thermodynamic constraints strengthen the coupling results that can be obtained with classical FCA. A prototype implementation of tFCA is available at http://hoverboard.io/L4FC.
    Mathematical Biosciences 01/2015; 1. DOI:10.1016/j.mbs.2015.01.003 · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations.
    Nature Communications 10/2014; 5:4893. DOI:10.1038/ncomms5893 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Flux Balance Analysis (FBA) is a widely used tool to model metabolic behavior and cellular function. Applications of FBA span a breadth of research from synthetic engineering of biofuels to understanding evolutionary adaptations. FBA predicts metabolic reaction fluxes that optimize a given objective. This objective is generally defined for unicellular organisms by a theoretical reaction which simulates biomass production. FBA has been extremely successful at predicting in E. coli growth rates under different media and gene essentiality, amongst other things. In order to improve predictions, additional constraints are coupled with optimization of the biomass function. Studies have suggested, however, that unicellular organisms - like multicellular organisms - do not grow at optimal rates. To further improve FBA predictions, particularly of internal cell fluxes, new techniques to explore the sub-optimal solution space need to be developed. Results We present an innovative FBA method called corsoFBA based on the optimization of protein cost at sub-optimal objective levels. Our method shows good agreement with experimental data of E. coli grown at different dilution rates. Maintaining the objective function close to its maximum value predicts metabolic states that closely resemble low dilution rates; while higher dilution rates can be mirrored by lowering the biomass production value. By using a modified version of Extreme Pathways, we are also able to quantify the energy production and overall protein cost for all possible pathways in the central carbon metabolism. Conclusion Metabolic flux distributions at the optimal objective can be substantially different from the near-optimal distributions. Importantly, the behavior of E. coli central carbon metabolism can be better predicted by exploring the sub-optimal FBA solution space. The corsoFBA method presented here is able to predict the behavior of PEP Carboxylase, the glyoxylate shunt and the Entner-Doudoroff pathway at different glucose levels, a behavior not predicted by the minimization of metabolic steps and FBA alone. This technique can be used to better predict internal cell fluxes under different conditions, and corsoFBA will be of great help for the study of cells from multicellular organisms using Flux Balance Analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0153-3) contains supplementary material, which is available to authorized users.
    BMC Systems Biology 04/2015; 9. DOI:10.1186/s12918-015-0153-3 · 2.85 Impact Factor