Article

Use of a rainbow trout oligonucleotide microarray to determine transcriptional patterns in aflatoxin B1-induced hepatocellular carcinoma compared to adjacent liver.

Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, 97331, USA.
Toxicological Sciences (Impact Factor: 4.48). 01/2006; 88(2):319-30. DOI: 10.1093/toxsci/kfi309
Source: PubMed

ABSTRACT Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its occurrence is associated with a number of environmental factors including ingestion of the dietary contaminant aflatoxin B(1) (AFB(1)). Research over the last 40 years has revealed rainbow trout (Oncorhynchus mykiss) to be an excellent research model for study of AFB(1)-induced hepatocarcinogenesis; however, little is known about changes at the molecular level in trout tumors. We have developed a rainbow trout oligonucleotide array containing 1672 elements representing over 1400 genes of known or probable relevance to toxicology, comparative immunology, carcinogenesis, endocrinology, and stress physiology. In this study, we applied microarray technology to examine gene expression of AFB(1)-induced HCC in the rainbow trout tumor model. Carcinogenesis was initiated in trout embryos with 50 ppb AFB(1), and after 13 months control livers, tumors, and tumor-adjacent liver tissues were isolated from juvenile fish. Global gene expression was determined in histologically confirmed HCCs compared to noncancerous adjacent tissue and sham-initiated control liver. We observed distinct gene regulation patterns in HCC compared to noncancerous tissue including upregulation of genes important for cell cycle control, transcription, cytoskeletal formation, and the acute phase response and downregulation of genes involved in drug metabolism, lipid metabolism, and retinol metabolism. Interestingly, the expression profiles observed in trout HCC are similar to the transcriptional signatures found in human and rodent HCC, further supporting the validity of the model. Overall, these findings contribute to a better understanding of the mechanism of AFB(1)-induced hepatocarcinogenesis in trout and identify conserved genes important for carcinogenesis in species separated evolutionarily by more than 400 million years.

Full-text

Available from: Caprice Rosato, Jun 02, 2015
0 Followers
 · 
63 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. marmoratus to initiate omics approaches. We evaluate the potential applications of integrated omics platforms for future studies in environmental science, developmental biology, and biomedical research. We conclude that information about the K. marmoratus genome will provide a better understanding of the molecular functions of genes, proteins, and metabolites that are involved in the biological functions of this species. Omics platforms, particularly combined technologies that make effective use of bioinformatics, will provide powerful tools for hypothesis-driven investigations and discovery-driven discussions on diverse aspects of this species and on fish and vertebrates in general.
    Marine Pollution Bulletin 04/2014; 85(2). DOI:10.1016/j.marpolbul.2014.04.005 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.
    Frontiers in Genetics 10/2014; 5. DOI:10.3389/fgene.2014.00348