Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics.

Department of Pharmacology, University of South Florida, Tampa, 33612, USA.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.37). 10/2005; 64(9):743-53. DOI: 10.1097/01.jnen.0000178444.33972.e0
Source: PubMed

ABSTRACT The presence of activated microglia in postmortem Alzheimer disease specimens is used to support the argument that inflammation contributes to Alzheimer pathogenesis. Transgenic mice overexpressing the amyloid precursor protein (APP) gene form amyloid plaques that are accompanied by local activation of microglia/macrophages in a manner similar to the human disease. Many markers of microglial activation and inflammation increase in an age-dependent manner in these mice. However, manipulation of these inflammatory reactions can lead to unexpected outcomes with several instances of reduced pathology when microglia/macrophages are activated further. In particular, anti-Abeta immunotherapy in amyloid-depositing transgenic mice causes a complex series of changes in microglial markers, negating the implicit belief that such activation is monotonic and represented equally well by any of several "activation" markers. A survey of the peripheral macrophage literature identifies at least 2 distinct activation states of macrophages with different consequences for the surrounding tissue. These different activation states can often be distinguished by the markers that are expressed. Several markers are identified from studies outside the brain that neuroscientists might consider evaluating when attempting to more definitively describe the activation state of the monocyte-derived cells in the brain.

Download full-text


Available from: Donna M Wilcock, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral aggregation of amyloid-β (Aβ) is thought to play a major role in the etiology of Alzheimer's disease. Environmental influences, including chronic bacterial or viral infections, are thought to alter the permeability of the blood-brain barrier (BBB) and thereby facilitate cerebral colonization by opportunistic pathogens. This may eventually trigger Aβ overproduction and aggregation. Host biomolecules that target and combat these pathogens, for instance, antimicrobial peptides (AMPs) such as Aβ itself, are an interesting option for the detection and diagnostic follow-up of such cerebral infections. As part of the innate immune system, AMPs are defensive peptides that efficiently penetrate infected cells and tissues beyond many endothelial barriers, most linings, including the BBB, and overall specifically target pathogens. Based on existing literature, we postulate a role for labeled AMPs as a marker to target pathogens that play a role in the aggregation of amyloid in the brain.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 03/2014; 11(1). DOI:10.1016/j.jalz.2013.12.020 · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The roles of microglia and macrophages during neuroinflammation and neurodegenerative diseases remain controversial. To date, at least 2 activations states have been suggested, consisting of a classical response (M1) and the alternative response (M2). Identifying selective biomarkers of microglia that representative their functional activation states may help elucidate disease course and enable a better understanding of repair mechanisms. Two cocktails containing either tumor necrosis factor (TNF)-α, interleukin (IL)-12, and IL-1β (referred to as CKT-1) or IL-13 and IL-4 (referred to CKT-2) were injections into the hippocampus of mice aged 6, 12, or 24 months. Microarray analysis was performed on hippocampal tissue 3 days postinjection. Gene transcripts were compared between CKT-1 versus CKT-2 stimulator cocktails. Several selective transcripts expressed for the CKT-1 included CXCL13, haptoglobin, MARCO, and calgranulin B, whereas a smaller subset of genes was selectively induced by the CKT-2 and consisted of FIZZ1, IGF-1, and EAR 11. Importantly, selective transcripts were induced at all ages by CKT-1, whereas selective gene transcripts induced by CKT-2 decreased with age suggesting an age-related reduction in the IL-4/ IL-13 signaling pathway.
    Neurobiology of aging 06/2013; 34(6):1610-1620. DOI:10.1016/j.neurobiolaging.2012.12.014 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complement components and their receptors are found within and around amyloid β (Aβ) cerebral plaques in Alzheimer's disease (AD). Microglia defend against pathogens through phagocytosis via complement component C3 and/or engagement of C3 cleavage product iC3b with complement receptor type 3 (CR3, Mac-1). Here, we provide direct evidence that C3 and Mac-1 mediate, in part, phagocytosis and clearance of fibrillar amyloid-β (fAβ) by murine microglia in vitro and in vivo. Microglia took up not only synthetic fAβ(42) but also amyloid cores from patients with AD, transporting them to lysosomes in vitro. Fibrillar Aβ(42) uptake was significantly attenuated by the deficiency or knockdown of C3 or Mac-1 and scavenger receptor class A ligands. In addition, C3 or Mac-1 knockdown combined with a scavenger receptor ligand, fucoidan, further attenuated fibrillar Aβ(42) uptake by N9 microglia. Fluorescent fibrillar Aβ(42) microinjected cortically was significantly higher in C3 and Mac-1 knockout mice compared with wild-type mice 5 days after surgery, indicating reduced clearance in vivo. Together, these results demonstrate that C3 and Mac-1 are involved in phagocytosis and clearance of fAβ by microglia, providing support for a potential beneficial role for microglia and the complement system in AD pathogenesis. © 2012 Wiley Periodicals, Inc.
    Glia 05/2012; 60(6):993-1003. DOI:10.1002/glia.22331 · 6.03 Impact Factor