Keratins as susceptibility genes for end-stage liver disease

Massey University, Palmerston North City, Manawatu-Wanganui, New Zealand
Gastroenterology (Impact Factor: 13.93). 10/2005; 129(3):885-93. DOI: 10.1053/j.gastro.2005.06.065
Source: PubMed

ABSTRACT Keratins 8 and 18 protect the liver from stress. Keratin 8 and 18 variants in 17 of 467 liver disease explants and 2 of 349 blood bank controls were previously reported in 5 analyzed exonic regions. We asked whether mutations were present in the remaining 10 exons of keratins 8 and 18.
Exonic regions were polymerase chain reaction-amplified from genomic DNA, isolated from the above-mentioned 2 cohorts, and analyzed for the presence of mutations. Mutant keratins were also studied biochemically.
We identified 10 novel keratin 8 and 18 heterozygous variants in 44 of 467 explants and 11 of 349 controls: keratin 18 deletion (delta64-71), a keratin 8 frameshift that truncates the last 14 amino acids; 8 missense keratin 8 and 18 alterations; and several new polymorphisms. The most common variant, keratin 8 R340H, at the highly conserved R340 was found in 30 of 467 explants and 10 of 349 controls (P = .02) and was confirmed in the diseased livers by generation of an R340H-specific antibody. Germline transmission and variant protein expression were verified. The mutations involved a variety of liver diseases, and some variants had an ethnic background preponderance. Mutations that introduced disulfide bonds (keratin 8 G61C or R453C) decreased keratin solubility, particularly after oxidative stress, whereas others decreased keratin 8 phosphorylation (keratin 8 G433S).
The overall frequency of keratin 8 and 18 variants was 12.4% in 467 liver disease explants and 3.7% in 349 blood bank controls (P < .0001). Variants can alter keratin solubility or phosphorylation and may render individuals susceptible to end-stage liver disease, depending on their genetic background and exposure to other insults, such as alcohol or viral infection.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported that a trans-dimer, homotypic disulfide bond involving Cys367 in keratin 14 (K14) occurs in an atomic-resolution structure of the interacting K5/K14 2B domains and in keratinocyte cell lines. Here we show that a sizable fraction of the K14 and K5 protein pools participates in interkeratin disulfide bonding in primary cultures of mouse skin keratinocytes. By comparing the properties of wild-type K14 with a completely cysteine-free variant thereof, we found that K14-dependent disulfide bonding limited filament elongation during polymerization in vitro but was necessary for the genesis of a perinuclear-concentrated network of keratin filaments, normal keratin cycling, and the sessile behavior of the nucleus and whole cell in keratinocytes studied by live imaging. Many of these phenotypes were rescued when analyzing a K14 variant harboring a single Cys residue at position 367. These findings establish disulfide bonding as a novel and important mechanism regulating the assembly, intracellular organization, and dynamics of K14-containing intermediate filaments in skin keratinocytes. © 2015 Feng and Coulombe.
    The Journal of Cell Biology 04/2015; 209(1):59-72. DOI:10.1083/jcb.201408079 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.
    The Journal of Cell Biology 01/2013; DOI:10.1083/jcb.201209028 · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B virus (HBV) infection can result in fatal liver diseases, including cirrhosis or liver failure, and its replication and pathogenesis depend on the critical interplay between viral and host factors. This study investigated HBV replication-related host proteins and the effect of candidate proteins on HBV replication. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to measure HBV replication-related proteins in HepG2 cells and HepG2.2.15 cells. KRT8 was up-regulated in HepG2.2.15 cells but not in HepG2 cells, and KRT8 was overexpressed in an HBV-infected patient's liver tissue. This result suggested that KRT8 is involved in HBV replication. To further clarify the relationship between KRT8 and HBV replication, KRT8 gene expression was inhibited by siRNA. The silencing of KRT8 mildly suppressed HBV replication. Moreover, overexpressed KRT8 significantly increased HBV replication, and the inhibition of HBV DNA did not suppress KRT8 expression. Thus, the host protein KRT8 is involved in the replication of HBV DNA, and it dramatically enhances HBV replication. J. Med. Virol. © 2013 Wiley Periodicals, Inc.
    Journal of Medical Virology 04/2014; 86(4). DOI:10.1002/jmv.23873 · 2.22 Impact Factor