Article

Ca2+ release from host intracellular stores and related signal transduction during Campylobacter jejuni 81-176 internalization into human intestinal cells

Laboratory of Enteric and Sexually Transmitted Diseases, FDA-Center for Biologics Evaluation and Research, 29 Lincoln Drive, Bldg 29/420 HFM440, Bethesda, MD 20892, USA.
Microbiology (Impact Factor: 2.84). 10/2005; 151(Pt 9):3097-105. DOI: 10.1099/mic.0.27866-0
Source: PubMed

ABSTRACT Campylobacter jejuni is the leading bacterial cause of human diarrhoeal disease in many parts of the world, including the USA. The ability of C. jejuni to invade the host intestinal epithelium is an important determinant of virulence. A common theme among pathogenic invasive micro-organisms is their ability to usurp the eukaryotic cell-signalling systems both to allow for invasion and to trigger disease pathogenesis. Ca(2+) is very important in a great variety of eukaryotic cell-signalling processes (e.g. calmodulin-activated enzymes, nuclear transcriptional upregulation, and cytoskeletal rearrangements). This study analyses the effects of Ca(2+) availability on invasion of human INT407 intestinal epithelial cells by C. jejuni strain 81-176. The ability of C. jejuni to invade INT407 cells was not blocked by chelation of any remaining extracellular Ca(2+) from host cells incubated in Ca(2+)-free, serum-free media. In contrast, C. jejuni invasion was markedly reduced either by chelating host intracellular Ca(2+) with 1,2-bis-(2-)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA, AM) or by blocking the release of Ca(2+) from intracellular stores with dantrolene or U73122. Moreover, Bay K8644, a plasma-membrane Ca(2+)-channel agonist, was observed to stimulate C. jejuni invasion, presumably by increasing host intracellular free Ca(2+) levels. Measurement of host-cell cytosolic Ca(2+) via spectrofluorimetry and fluorescence microscopy revealed an increase in Ca(2+) from 10 min post-infection. Monolayer pretreatment with either a calmodulin antagonist or a specific inhibitor of protein kinase C was found to cause a marked reduction in C. jejuni invasion, suggesting roles for these Ca(2+)-activated modulators in signal-transduction events involved in C. jejuni invasion. These results demonstrate that C. jejuni induces the mobilization of Ca(2+) from host intracellular stores, which is an essential step in the invasion of intestinal cells by this pathogen.

0 Bookmarks
 · 
48 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
    PLoS ONE 12/2014; 9(12). DOI:10.1371/journal.pone.0114474 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63–250 μg mL−1). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL−1). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58–1.53 μg mL−1 and 0.54–1.17 μg mL−1, respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed.
    Food Microbiology 04/2015; 46:227–233. DOI:10.1016/j.fm.2014.08.002 · 3.37 Impact Factor
  • Source