Article

Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart

Department of Pharmaco-Biology, University of Calabria, 87030, Arcavacata di Rende (CS), Italy.
Archiv für Kreislaufforschung (Impact Factor: 5.96). 02/2006; 101(1):43-52. DOI: 10.1007/s00395-005-0547-2
Source: PubMed

ABSTRACT In this study we tested the hypothesis that vasostatins could act as myocardial modulators in the mammalian heart. Using the Langendorff-perfused rat heart, the cardiac effects of the two recombinant human CGA N-terminal fragments STA-CGA1-78 and STA-CGA1-115, containing the vasostatin-1 (CGA 1-76) and vasostatin-2 (CGA 1-113) sequences, respectively, were evaluated at concentrations of 11 / 165 nM. Cardiac performance was evaluated by analyzing left ventricular pressure (LVP) and the rate pressure product (RPP: HR x LVP), used as indexes of contractile activity and cardiac work, respectively. Under basal conditions, STA-CGA1-78 at all concentrations tested elicited a dose-dependent negative inotropism (LVP variations ranging from -9.6% +/- 2 to -23% +/- 2.9) without affecting coronary pressure (CP). In contrast, STA-CGA1-115 increased CP at 110 and 165 nM without affecting inotropism. Both STA-CGA1-78 and STA-CGA1-115 counteracted the cardio-stimulatory effects of isoproterenol (ISO). The ISO-dependent positive chronotropism was unaffected by STA-CGA1-78, while being reduced by STA-CGA1-115. Both peptides abolished the ISO-induced positive inotropism without modifying either the beta-adrenergic-dependent coronary dilation or the ouabain-induced positive inotropism. The analysis of the percentage of variations of RPP in terms of EC50 values of ISO alone (-8.5 +/- 0.3; r2 = 0.88) and in presence of STA-CGA1-78 (11, or 33, or 65 nM: -7.7 +/- 0.15, r2 = 0.97; -7.7 +/- 0.15, r2 = 0.97; -7.8 +/- 0.78, r2 = 0.55, respectively) revealed a non-competitive type of antagonism of STA-CGA1-78. Taken together, these data suggest vasostatins as novel cardioregulatory peptides in mammals.

0 Bookmarks
 · 
76 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Half a century after the discovery of chromogranin A as a secreted product of the catecholamine storage granules in the bovine adrenal medulla, the physiological role for the circulating pool of this protein has been recently coined, namely as an important player in vascular homeostasis. While the circulating chromogranin A since 1984 has proved to be a significant and useful marker of a wide range of pathophysiological and pathological conditions involving the diffuse neuroendocrine system, this protein has now been assigned a physiological "raison d'etre" as a regulator in vascular homeostasis. Moreover, chromogranin A processing in response to tissue damage and blood coagulation provides the first indication of a difference in time frame of the regulation of angiogenesis evoked by the intact chromogranin A and its two major peptide products, vasostatin-1 and catestatin. The impact of these discoveries on vascular homeostasis, angiogenesis, cancer, tissue repair and cardio-regulation will be discussed.
    Cellular and Molecular Life Sciences CMLS 10/2014; 72(2). DOI:10.1007/s00018-014-1750-9 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Together with Chromogranin B and Secretogranins, Chromogranin A (CGA) is stored in secretory (chromaffin) granules of the diffuse neuroendocrine system and released with noradrenalin and adrenalin. Co-stored within the granule together with neuropeptideY, cardiac natriuretic peptide hormones, several prohormones and their proteolytic enzymes, CGA is a multifunctional protein and a major marker of the sympatho-adrenal neuroendocrine activity. Due to its partial processing to several biologically active peptides, CGA appears an important pro-hormone implicated in relevant modulatory actions on endocrine, cardiovascular, metabolic, and immune systems through both direct and indirect sympatho-adrenergic interactions. As a part of this scenario, we here illustrate the emerging role exerted by the full-length CGA and its three derived fragments, i.e., Vasostatin 1, catestatin and serpinin, in the control of circulatory homeostasis with particular emphasis on their cardio-vascular actions under both physiological and physio-pathological conditions. The Vasostatin 1- and catestatin-induced cardiodepressive influences are achieved through anti-beta-adrenergic-NO-cGMP signaling, while serpinin acts like beta1-adrenergic agonist through AD-cAMP-independent NO signaling. On the whole, these actions contribute to widen our knowledge regarding the sympatho-chromaffin control of the cardiovascular system and its highly integrated "whip-brake" networks.
    Frontiers in Chemistry 08/2014; 2:64. DOI:10.3389/fchem.2014.00064
    This article is viewable in ResearchGate's enriched format