Article

Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF.

Institute of Laboratory Medicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg University, Sweden.
Experimental Neurology (Impact Factor: 4.62). 01/2006; 196(2):273-81. DOI: 10.1016/j.expneurol.2005.08.002
Source: PubMed

ABSTRACT This investigation describes the discovery of novel possible cerebrospinal fluid (CSF) biomarkers for frontotemporal dementia (FTD) using surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS). Sixteen clinically diagnosed FTD patients and 12 non-demented controls were included in the study. CSF was collected and analyzed for protein expression by SELDI-TOF MS. The samples were analyzed on four different array surfaces using two different energy-absorbing molecules as matrices. In total each sample was subjected to eight different surface/matrix conditions. About 2000 protein peaks (mass/charge ratios) were detected. Forty-two peaks were differentially expressed in FTD (P < 0.01). After exclusion of peaks with low signal-to-noise ratio and/or poor resolution and peaks representing differentially charged proteins, 10 peaks remained, five of which were increased and five decreased in FTD cases compared to controls. Using partial least square discriminant analysis (PLS-DA), the combination of these biomarkers discriminated FTD from non-demented controls with a sensitivity of 94%, a specificity of 83% and an accuracy of 89%. Five of the peaks were purified further and identified by tandem MS as a fragment of neurosecretory protein VGF, transthyretin, S-cysteinylated transthyretin, truncated cystatin C and a fragment of chromogranin B. With use of these potential biomarkers, FTD can be distinguished from control subjects with high accuracy in this pilot study.

0 Bookmarks
 · 
82 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the role of biological and clinical impact of aberrant promoter hypermethylation (PH) in ovarian cancer (OC). PH of PGP9.5, HIC1, AIM1, APC, PAK3, MGMT, KIF1A, CCNA1, ESR1, SSBP2, GSTP1, FKBP4 and VGF were assessed by quantitative methylation specific PCR (QMSP) in a training set. We selected two genes (VGF and PGP9.5) for further QMSP analysis in a larger independent validation (IV) set with available clinical data. Biologic relevance of VGF gene was also evaluated. PH frequency for PGP9.5 and VGF were 85% (316/372) and 43% (158/366) respectively in the IV set of samples while no PH was observed in controls. In 372 OC cases with available follow up, PGP9.5 and VGF PH were correlated with better patient survival [Hazard Ratios (HR) for overall survival (OS) were 0.59 (95% Confidence Intervals (CI) = 0.42-0.84, p = 0.004), and 0.73 (95%CI = 0.55-0.97, p = 0.028) respectively, and for disease specific survival (DSS) were 0.57 (95%CI 0.39-0.82, p = 0.003) and 0.72 (95%CI 0.54-0.96, p = 0.027). In multivariate analysis, VGF PH remained an independent prognostic factor for OS (HR 0.61, 95%CI 0.43-0.86, p<0.005) and DSS (HR 0.58, 95%CI 0.41-0.83, p<0.003). Furthermore, PGP9.5 PH was significantly correlated with lower grade, early stage tumors, and with absence of residual disease. Forced expression of VGF in OC cell lines inhibited cell growth. Our results indicate that VGF and PGP9.5 PH are potential biomarkers for ovarian carcinoma. Confirmatory cohorts with longitudinal follow-up are required in future studies to define the clinical impact of VGF and PGP9.5 PH before clinical application.
    PLoS ONE 10/2013; 8(9):e70878. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the VGF derived peptide TLQP-21 stimulates gonadotropin-releasing hormone (GnRH) and gonadotropin secretion, available data on VGF peptides and reproduction are limited. We used antibodies specific for the two ends of the VGF precursor, and for two VGF derived peptides namely TLQP and PGH, to be used in immunohistochemistry and enzyme-linked immunosorbent assay complemented with gel chromatography. In cycling female rats, VGF C-/N-terminus and PGH peptide antibodies selectively labelled neurones containing either GnRH, or kisspeptin (VGF N-terminus only), pituitary gonadotrophs and lactotrophs, or oocytes (PGH peptides only). Conversely, TLQP peptides were restricted to somatostatin neurones, gonadotrophs, and ovarian granulosa, interstitial and theca cells. TLQP levels were highest, especially in plasma and ovary, with several molecular forms shown in chromatography including one compatible with TLQP-21. Among the cycle phases, TLQP levels were higher during metestrus-diestrus in median eminence and pituitary, while increased in the ovary and decreased in plasma during proestrus. VGF N- and C-terminus peptides also showed modulations over the estrous cycle, in median eminence, pituitary and plasma, while PGH peptides did not. In ovariectomised rats, plasmatic TLQP peptide levels showed distinct reduction suggestive of a major origin from the ovary, while the estrogen-progesterone treatment modulated VGF C-terminus and TLQP peptides in the hypothalamus-pituitary complex. In in vitro hypothalamus, TLQP-21 stimulated release of growth hormone releasing hormone but not of somatostatin. In conclusion, various VGF peptides may regulate the hypothalamus-pituitary complex via specific neuroendocrine mechanisms while TLQP peptides may act at further, multiple levels via endocrine mechanisms involving the ovary.
    PLoS ONE 10/2014; 9(10):e108456. · 3.53 Impact Factor