Pivotal role of PAI-1 in a murine model of hepatic vein thrombosis

Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN 37232, USA.
Blood (Impact Factor: 10.45). 02/2006; 107(1):132-4. DOI: 10.1182/blood-2005-07-2681
Source: PubMed


Hepatic veno-occlusive disease (VOD) is a common complication of high-dose chemotherapy associated with bone marrow transplantation. While the pathogenesis of VOD is uncertain, plasminogen activator inhibitor-1 (PAI-1) has emerged as a diagnostic marker and predictor of VOD in humans. In this study, we investigated the role of PAI-1 in a murine model of VOD produced by long-term nitric oxide synthase inhibition using L-NAME. After 6 weeks, wild-type (WT) mice developed extensive fibrinoid hepatic venous thrombi and biochemical evidence of hepatic injury and dysfunction. In contrast, PAI-1-deficient mice were largely protected from the development of hepatic vein thrombosis. Furthermore, WT mice that received tiplaxtinin, an antagonist of PAI-1, were effectively protected from L-NAME-induced thrombosis. Taken together, these data indicate that NO and PAI-1 play pivotal and antagonistic roles in hepatic vein thrombosis and that PAI-1 is a potential target in the prevention and treatment of VOD in humans.

6 Reads
  • Source
    • "It has been proposed to be an early marker of VOD diagnosis both in pediatric and adult HSCT patients [11, 12]. PAI-1 inhibitor could prevent hepatic venous injury in murine models, and PAI-1-deficient mice were protected largely from VOD [27]. Some investigators also reported an elevated level of PAI-1 or t-PA/PAI in TA-TMA [14, 15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Thrombotic events are common and potentially fatal complications in patients receiving hematopoietic stem cell transplantation (HSCT). Early diagnosis is crucial but remains controversial. In this study, we investigated the early alterations of hemostatic parameters in allogeneic HSCT recipients and determined their potential diagnostic values in transplantation-related thrombotic complications and other post-HSCT events. Results from 107 patients with allogeneic HSCT showed higher levels of plasma plasminogen activator inhibitor-1 (PAI-1), fibrinogen, and tissue-plasminogen activator (t-PA) and a lower level of plasma protein C after transplantation. No change was found for prothrombin time, antithrombin III, D: -dimer, and activated partial thromboplastin time following HSCT. Transplantation-related complications (TRCs) in HSCT patients were defined as thrombotic (n=8), acute graft-versus-host disease (aGVHD, n=45), and infectious (n=38). All patients with TRCs, especially the patients with thrombotic complications, presented significant increases in the mean and maximum levels of PAI-1 during the observation period. Similarly, a high maximum t-PA level was found in the thrombotic group. In contrast, apparent lower levels of mean and minimum protein C were observed in the TRC patients, especially in the aGVHD group. Therefore, the hemostatic imbalance in the early phase of HSCT, reflecting prothrombotic state and endothelial injury due to the conditioning therapy or TRCs, might be useful in the differential diagnosis of the thrombotic complication from other TRCs.
    Annals of Hematology 06/2011; 90(10):1201-8. DOI:10.1007/s00277-011-1273-5 · 2.63 Impact Factor
  • Source

  • [Show abstract] [Hide abstract]
    ABSTRACT: Veno-occlusive disease of the liver (VOD) remains a troubling and potentially fatal complication of high-dose chemotherapy and hematopoietic stem cell transplantation conditioning regimens. No effective therapy has been available for these patients to date, and the best supportive care measures remain woefully inadequate. Defibrotide (DF) (Gentium, S.p.A., Como, Italy), a polydisperse mixture of all the single-stranded phosphodiester oligodeoxyribonucleotides that can be obtained from the controlled depolymerization of porcine intestinal mucosal genomic DNA, seems to offer a safe and effective treatment for some patients suffering from severe VOD, a condition for which no accepted standard therapy currently exists. Early clinical studies evaluating the efficacy of DF for the treatment of severe VOD in patients undergoing hematopoietic stem cell transplantation have been very encouraging. Approximately 45% of the patients treated in multiple initial phase II clinical trials achieved a complete response at day +100, demonstrating normalization of serum bilirubin and resolution of the clinical syndrome. However, although multi-institutional, these represented single arm studies. A large, FDA-approved, pivotal, prospective, multi-institutional, global phase III trial of DF vs. historical controls (best available therapy) commenced in the first quarter of 2006 and should provide further validation of DF's efficacy. The drug seems to have few significant side effects, and almost all test subjects who have received this treatment have tolerated it well. Although the mechanism of action remains unclear, the drug exerts minimal systemic anticoagulant effects yet appears to induce numerous antithrombotic and profibrinolytic effects both in vitro and in vivo. It may function as an adenosine receptor agonist and causes increased concentrations of endogenous prostaglandins, which modulate thrombomodulin, platelets, and fibrinolysis. It also appears to block lipopolysaccharide (LPS)-induced tissue factor (TF) expression. However, despite the fact the DF is composed of oligonucleotides, its mechanism of action, which at the present time is unclear, is not related to Watson-Crick base pair-dependent downregulation of gene expression but is rather likely a result of its polyanionic nature.
    Oligonucleotides 02/2006; 16(1):105-14. DOI:10.1089/oli.2006.16.105 · 3.08 Impact Factor
Show more

Similar Publications