Article

Estrogen-induced contraction of coronary arteries is mediated by superoxide generated in vascular smooth muscle.

Department of Pharmacology and Toxicology, Medical College of Georgia, 1120 15th St., Augusta, GA 30912-2300, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 3.63). 11/2005; 289(4):H1468-75. DOI: 10.1152/ajpheart.01173.2004
Source: PubMed

ABSTRACT Although previous studies demonstrated beneficial effects of estrogen on cardiovascular function, the Women's Health Initiative has reported an increased incidence of coronary heart disease and stroke in postmenopausal women taking hormone replacement therapy. The objective of the present study was to identify a molecular mechanism whereby estrogen, a vasodilatory hormone, could possibly increase the risk of cardiovascular disease. Isometric contractile force recordings were performed on endothelium-denuded porcine coronary arteries, whereas molecular and fluorescence studies identified estrogen signaling molecules in coronary smooth muscle. Estrogen (1-1,000 nM) relaxed arteries in an endothelium-independent fashion; however, when arteries were pretreated with agents to uncouple nitric oxide (NO) production from NO synthase (NOS), estrogen contracted coronary arteries with an EC(50) of 7.3 +/- 4 nM. Estrogen-induced contraction was attenuated by reducing superoxide (O(2)(-)). Estrogen-stimulated O(2)(-) production was detected in NOS-uncoupled coronary myocytes. Interestingly, only the type 1 neuronal NOS isoform (nNOS) was detected in myocytes, making this protein a likely target mediating both estrogen-induced relaxation and contraction of endothelium-denuded coronary arteries. Estrogen-induced contraction was completely inhibited by 1 muM nifedipine or 10 muM indomethacin, indicating involvement of dihydropyridine-sensitive calcium channels and contractile prostaglandins. We propose that a single molecular mechanism can mediate the dual and opposite effect of estrogen on coronary arteries: by stimulating type 1 nNOS in coronary arteries, estrogen produces either vasodilation via NO or vasoconstriction via O(2)(-).

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries, and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES which did not involve protein synthesis or aromatization to 17β-estradiol. Fluorescence and immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced production of both peroxynitrite precursors (i.e., superoxide, NO), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the PI3 kinase - Akt cascade initiated by activation of the androgen receptor, and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel, non-genomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite, formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation.
    Journal of Pharmacology and Experimental Therapeutics 01/2013; · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both basic science and clinical studies support the concept that vitamin D deficiency is involved in the pathogenesis of cardiovascular and renal diseases through its association with diabetes, obesity, and hypertension. Understanding the underlying mechanisms may provide a rationale for advocating adequate intake of vitamin D and calcium in all populations, thereby preventing many chronic diseases. This review explores the effect of vitamin D deficiency in the development of cardiovascular and renal diseases, and the role of vitamin D supplementation on cardiovascular outcomes. In addition, it highlights the importance of vitamin D intake for the prevention of adverse long-term health consequences, and in ways to facilitate the management of cardiovascular disease. This is particularly true for African American and postmenopausal women, who are at added risk for cardiovascular disease. We suggest that the negative cardiovascular effects of low vitamin D in postmenopausal women could be improved by a combined treatment of vitamin D and sex steroids acting through endothelium-dependent and/or -independent mechanisms, resulting in the generation of nitric oxide and calcitonin gene-related peptide (CGRP).
    Frontiers in bioscience (Scholar edition) 01/2013; S5:134-148.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A key to harnessing the enormous therapeutic potential of estrogens is understanding the diversity of estrogen receptors and their signaling mechanisms. In addition to the classic nuclear estrogen receptors (i.e., ERα and ERβ), over the past decade a novel G-protein-coupled estrogen receptor (GPER) has been discovered in cancer and other cell types. More recently, this non-genomic signaling mechanism has been found in blood vessels, and mediates vasodilatory responses to estrogen and estrogen-like agents; however, downstream signaling events involved acute estrogen action remain unclear. The purpose of this review is to discuss the latest knowledge concerning GPER modulation of cardiovascular function, with a particular emphasis upon how activation of this receptor could mediate acute estrogen effects in the heart and blood vessels (i.e., vascular tone, cell growth and differentiation, apoptosis, endothelial function, myocardial protection). Understanding the role of GPER in estrogen signaling may help resolve some of the controversies associated with estrogen and cardiovascular function. Moreover, a more thorough understanding of GPER function could also open significant opportunities for the development of new pharmacological strategies that would provide the cardiovascular benefits of estrogen while limiting the potentially dangerous side effects.
    Pharmacological Research 03/2013; · 4.35 Impact Factor

Full-text

View
1 Download
Available from