Article

Structure-function correlates of cognitive decline in aging

Department of Psychology, Stockholm University, Tukholma, Stockholm, Sweden
Cerebral Cortex (Impact Factor: 8.31). 08/2006; 16(7):907-15. DOI: 10.1093/cercor/bhj036
Source: PubMed

ABSTRACT To explore neural correlates of cognitive decline in aging, we used longitudinal behavioral data to identify two groups of older adults (n = 40) that differed with regard to whether their performance on tests of episodic memory remained stable or declined over a decade. Analysis of structural and diffusion tensor imaging (DTI) revealed a heterogeneous set of differences associated with cognitive decline. Manual tracing of hippocampal volume showed significant reduction in those older adults with a declining memory performance as did DTI-measured fractional anisotropy in the anterior corpus callosum. Functional magnetic resonance imaging during incidental episodic encoding revealed increased activation in left prefrontal cortex for both groups and additional right prefrontal activation for the elderly subjects with the greatest decline in memory performance. Moreover, mean DTI measures in the anterior corpus callosum correlated negatively with activation in right prefrontal cortex. These results demonstrate that cognitive decline is associated with differences in the structure as well as function of the aging brain, and suggest that increased activation is either caused by structural disruption or is a compensatory response to such disruption.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current study sought to examine the relative influence of genetic and environmental factors on corpus callosum (CC) microstructure in a community sample of older adult twins. Analyses were undertaken in 284 healthy older twins (66% female; 79 MZ and 63 DZ pairs) from the Older Australian Twins Study. The average age of the sample was 69.82 (SD = 4.76) years. Brain imaging scans were collected and DTI measures were estimated for the whole CC as well as its five subregions. Parcellation of the CC was performed using Analyze. In addition, white matter lesion (WMLs) burden was estimated. Heritability and genetic correlation analyses were undertaken using the SOLAR software package. Age, sex, scanner, handedness and blood pressure were considered as covariates. Heritability (h2) analysis for the DTI metrics of whole CC, indicated significant h2 for fractional anisotropy (FA) (h2 = 0.56; p = 2.89×10-10), mean diffusivity (MD) (h2 = 0.52; p = 0.30×10-6), radial diffusivity (RD) (h2 = 0.49; p = 0.2×10-6) and axial diffusivity (AD) (h2 = 0.37; p = 8.15×10-5). We also performed bivariate genetic correlation analyses between (i) whole CC DTI measures and (ii) whole CC DTI measures with total brain WML burden. Across the DTI measures for the whole CC, MD and RD shared 84% of the common genetic variance, followed by MD- AD (77%), FA - RD (52%), RD - AD (37%) and FA - MD (11%). For total WMLs, significant genetic correlations indicated that there was 19% shared common genetic variance with whole CC MD, followed by CC RD (17%), CC AD (16%) and CC FA (5%). Our findings suggest that the CC microstructure is under moderate genetic control. There was also evidence of shared genetic factors between the CC DTI measures. In contrast, there was less shared genetic variance between WMLs and the CC DTI metrics, suggesting fewer common genetic variants.
    PLoS ONE 12/2014; 9(12):e113181. DOI:10.1371/journal.pone.0113181 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Memory functioning in Autism Spectrum Disorder (ASD) is characterized by impairments in the encoding of relational but not item information and difficulties in the recollection of contextually rich episodic memories but not in the retrieval of relatively context-free memories through processes of familiarity. The neural underpinnings of this profile and the extent to which encoding difficulties contribute to retrieval difficulties in ASD remain unclear. Using a paradigm developed by Addis and McAndrews [2006; Neuroimage, 33, 1194–1206] we asked adults with and without a diagnosis of ASD to study word-triplets during functional Magnetic Resonance Imaging (fMRI) scanning that varied in the number of category relations amongst component words. Performance at test confirmed attenuated recollection in the context of preserved familiarity based retrieval in ASD. The results also showed that recollection but not familiarity based retrieval increases as a function of category relations in word triads for both groups, indicating a close link between the encoding of relational information and recollection. This link was further supported by the imaging results, where blood oxygen level dependent (BOLD) signal responses in overlapping regions of the inferior prefrontal cortex were sensitive to the relational encoding manipulation as well as the contrast between recollection versus familiarity based retrieval. Interestingly, however, there was no evidence of prefrontal signal differentiation for this latter contrast in the ASD group for whom signal changes in a left hippocampal region were also marginally attenuated. Together, these observations suggest that attenuated levels of episodic recollection in ASD are, at least in part, attributable to anomalies in relational encoding processes. Autism Res 2015. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 01/2015; DOI:10.1002/aur.1448 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to prominent theories of aging, the brain may reorganize to compensate for neural deterioration and prevent or offset cognitive decline. A frequent and striking finding in functional imaging studies is that older adults recruit additional regions relative to young adults performing the same task. This is often interpreted as evidence for functional reorganization, suggesting that, as people age, different regions or networks may support the same cognitive functions. Associations between additional recruitment and better performance in older adults have led to the suggestion that the additional recruitment may contribute to preserved cognitive function in old age and may explain some of the variation among individuals in preservation of function. However, many alternative explanations are possible, and recent findings and methodological developments have highlighted the need for more systematic approaches to determine whether reorganization occurs with age and whether it benefits performance. We reevaluate current evidence for compensatory functional reorganization in the light of recent moves to address these challenges.
    Journal of Cognitive Neuroscience 01/2015; DOI:10.1162/jocn_a_00783 · 4.49 Impact Factor

Full-text

Download
105 Downloads
Available from
May 21, 2014