Article

Quasiclassical determination of reaction probabilities as a function of the total angular momentum.

Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain.
The Journal of Chemical Physics (Impact Factor: 3.12). 10/2005; 123(9):94101. DOI: 10.1063/1.2009739
Source: PubMed

ABSTRACT This article presents a quasiclassical trajectory (QCT) method to determine the reaction probability as a function of the total angular momentum J for any given value of the initial rotational angular momentum j. The proposed method is based on a discrete sampling of the total and orbital angular momenta for each trajectory and on the development of equations that have a clear counterpart in the quantum-mechanical (QM) case. The reliability of the method is illustrated by comparing QCT and time-dependent wave-packet QM results for the H+D(2)(upsilon=0,j=4,10) reaction. The small discrepancies between both sets of calculations, when they exist, indicate some genuine quantum effects. In addition, a procedure to extract the reaction probabilities as a function of J when trajectories are calculated in the usual way using a continuous distribution of impact parameters is also described.

0 Followers
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detailed quantum probabilities of the O+O2 reactive system have been computed at zero total angular momentum using the time-independent quantum program ABC thanks to the restructuring of the code and its implementation on the EGEE production Grid. Their main features are discussed and out of them J-shifting thermal rate coefficients have been computed to compare with the experiment and quasiclassical trajectory results over a wide range of temperatures.
    Theoretical Chemistry Accounts 06/2009; 123(3):249-256. DOI:10.1007/s00214-009-0524-1 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The technique of local angular momentum-local impact parameter (LAM-LIP) analysis has recently been shown to provide valuable dynamical information on the angular scattering of chemical reactions under semiclassical conditions. The LAM-LIP technique exploits a nearside-farside (NF) decomposition of the scattering amplitude, which is assumed to be a Legendre partial wave series. In this paper, we derive the "fundamental NF LAM identity," which relates the full LAM to the NF LAMs (there is a similar identity for the LIP case). Two derivations are presented. The first uses complex variable techniques, while the second exploits an analogy between the motion of the scattering amplitude in the Argand plane with changing angle and the classical mechanical motion of a particle in a plane with changing time. Alternative forms of the fundamental LAM-LIP identity are described, one of which gives rise to a CLAM-CLIP plot, where CLAM denotes (Cross section) x LAM and CLIP denotes (Cross section) x LIP. Applications of the NF LAM theory, together with CLAM plots, are reported for state-to-state transitions of the benchmark reactions F+H2-->FH+H, H+D2-->HD+D, and Cl+HCl-->ClH+Cl, using as input both numerical and parametrized scattering matrix elements. We use the fundamental LAM identity to explain the important empirical observation that a NF cross section analysis and a NF LAM analysis provide consistent (and complementary) information on the dynamics of chemical reactions.
    The Journal of Chemical Physics 10/2006; 125(13):133504. DOI:10.1063/1.2210480 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a quasiclassical trajectory (QCT) method for determining the cumulative reaction probability (CRP) as a function of the total energy. The method proposed is based on a discrete sampling using integer values of the total and orbital angular momentum quantum numbers for each trajectory and on the development of equations that have a clear counterpart in the quantum mechanical (QM) case. The calculations comprise cumulative reaction probabilities at a given total angular momentum J, as well as those summed over J. The latter are used to compute QCT rate constants. The method is illustrated by comparing QCT and exact QM results for the H+H2, H+D2, D+H2, and H+HD reactions. The agreement between QCT and QM results is very good, with small discrepancies between the two data sets indicating some genuine quantum effects. The most important of these involves the value of the CRP at low energies which, due to the absence of tunneling, is lower in the QCT calculations, causing the corresponding rate constants to be smaller. The second is the steplike structure that is clearly displayed in the QM CRP for J = 0, which is much smoother in the corresponding QCT results. However, when the QCT density of reactive states, i.e., the derivatives of the QCT CRP with respect to the energy, is calculated, a succession of maxima and minima is obtained which roughly resembles those found in the QM calculations, although the latter are considerably sharper. The analysis of the broad peaks in the QCT density of reactive states indicates that the distributions of collision times associated with the maxima are somewhat broader, with a tail extending to larger collision times, than those associated with the minima. In addition, the QM and QCT dynamics of the isotopic variants mentioned above are compared in the light of their CRPs. Issues such as the compliance of the QCT CRP with the law of microscopic reversibility, as well as the similarity between the CRPs for ortho and para species in the QM and QCT cases, are also addressed.
    The Journal of Chemical Physics 11/2006; 125(14):144105. DOI:10.1063/1.2353837 · 3.12 Impact Factor
Show more