The macrophage scavenger receptor CD163

Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdamo, North Holland, Netherlands
Immunobiology (Impact Factor: 3.18). 02/2005; 210(2-4):153-60. DOI: 10.1016/j.imbio.2005.05.010
Source: PubMed

ABSTRACT Mature tissue macrophages form a first line of defense to recognize and eliminate potential pathogens; these specialized cells are capable of phagocytosis, degradation of self and foreign materials, establishment of cell-cell interactions, and the production of inflammatory mediators. Mature tissue macrophages express a variety of receptors, including the scavenger receptor cystein-rich (SRCR) superfamily members. CD163 is a member of the SRCR family class B and is expressed on most subpopulations of mature tissue macrophages. The best characterized function of CD163, which is essentially a homeostatic one, is related to the binding of Hemoglobin:Haptoglobin complexes. Furthermore, it has been suggested that CD163 positive macrophages or the soluble form of CD163 plays a role in the resolution of inflammation, as they are found in high numbers in inflamed tissue.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute respiratory distress syndrome (ARDS) is a serious medical condition occurring in patients with polytrauma, pulmonary or non-pulmonary sepsis, pneumonia and many other circumstances. It causes inflammation of the lung parenchyma leading to impaired gas exchange with a systemic release of inflammatory mediators, causing consequential lung tissue injury, hypoxemia and frequently multiple organ failure. The aim of current study was to describe expression of inflammatory markers (myeloperoxidase, CD163 and vascular endothelial growth factor) by the cells in acute phase of ARDS. The lung samples of a 20-year-old man who had suffered a serious motorbike accident were obtained for histological examination. He died on the seventh day as a consequence of respiratory failure. Our results imply that expression of CD163 was restricted to activated alveolar macrophages and monocytes. Immunopositivityof MPO was observed in neutrophil granulocytes within lung alveoli and lung blood vessels. Myeloperoxidase positivity was observed in alveolar macrophages, too. Vascular endothelial growth factor was expressed in cytoplasm of neutrophil granulocytes, monocytes, small-sized alveolar macrophages and type II pneumocytes localized mostly inside lung alveoli. On the contrary, no positivity was observed in lung endothelial cells of blood vessels.
    International journal of clinical and experimental pathology 06/2014; · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV infected people are living longer due to the success of combined antiretroviral therapy (cART).However, greater than 40-70% of HIV infected individuals develop HIV associated neurocognitive disorders (HAND) that continues to be a major public health issue. While cART reduces peripheral virus, it does not limit the low level, chronic neuroinflammation that is ongoing during the neuropathogenesis of HIV. Monocyte transmigration across the blood brain barrier (BBB), specifically that of the mature CD14+CD16+ population that is highly susceptible to HIV infection, is critical to the establishment of HAND as these cells bring virus into the brain and mediate the neuroinflammation that persists, even if at low levels, despite antiretroviral therapy. CD14+CD16+ monocytes preferentially migrate into the CNS early during peripheral HIV infection in response to chemotactic signals, including those from CCL2 and CXCL12. Once within the brain, monocytes differentiate into macrophages and elaborate inflammatory mediators. Monocytes/macrophages constitute a viral reservoir within the CNS and these latently infected cells may perpetuate the neuropathogenesis of HIV. This review will discuss mechanisms that mediate transmigration of CD14+CD16+ monocytes across the BBB in the context of HIV infection, the contribution of these cells to the neuropathogenesis of HIV, and potential monocyte/macrophage biomarkers to identify HAND and monitor its progression.
    Current HIV Research 05/2014; DOI:10.2174/1570162X12666140526114526 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella in swine is a major food safety problem, as the majority of US swine herds are Salmonella-positive. Salmonella can be shed from colonized swine and contaminate (i) neighbouring pigs; (ii) slaughter plants and pork products; (iii) edible crops when swine manure is used as a fertilizer; and (iv) water supplies if manure used as crop fertilizer runs off into streams and waterways. A potentially powerful method of addressing pre-harvest food safety at the farm level is through genetic improvement of disease resistance in animals. In this research, we describe a successful strategy for discovering genetic variation at candidate genes associated with disease resistance in pigs. This involves integrating our recent global gene expression analysis of the porcine response to Salmonella with information from the literature about important candidate genes. We identified single-nucleotide polymorphisms (SNPs) in these functional candidate genes and genotyped three independent pig populations that had data on Salmonella faecal shedding or internal burden (total n = 377) at these loci. Of 31 SNPs genotyped, 21 SNPs segregated in at least two populations with a minor allele frequency of 15% or greater. Statistical analysis revealed thirteen SNPs associated with Salmonella faecal shedding or tissue colonization, with an estimated proportion of false positives (PFP) ≤0.2. The genes with associated SNPs included GNG3, NCF2, TAP1, VCL, AMT, CCR1, CD163, CCT7, EMP1 and ACP2. These associations provide new information about the mechanisms of porcine host response to Salmonella and may be useful in improving genetic resistance to this bacterium.
    Animal Genetics 10/2011; 42(5):521-34. DOI:10.1111/j.1365-2052.2010.02171.x · 2.21 Impact Factor