Article

Ultrastructural morphometrical and immunocytochemical analyses of hepatocyte nuclei from mice fed on genetically modified soybean.

Istituto di Istologia e Analisi di Laboratorio, via Zeppi s n, University of Urbino, Italy.
Cell Structure and Function (Impact Factor: 2.35). 09/2002; 27(4):173-80. DOI: 10.1247/csf.27.173
Source: PubMed

ABSTRACT No direct evidence that genetically modified (GM) food may represent a possible danger for health has been reported so far; however, the scientific literature in this field is still quite poor. Therefore, we carried out an ultrastructural morphometrical and immunocytochemical study on hepatocytes from mice fed on GM soybean, in order to investigate eventual modifications of nuclear components of these cells involved in multiple metabolic pathways related to food processing. Our observations demonstrate significant modifications of some nuclear features in GM-fed mice. In particular, GM fed-mice show irregularly shaped nuclei, which generally represents an index of high metabolic rate, and a higher number of nuclear pores, suggestive of intense molecular trafficking. Moreover, the roundish nucleoli of control animals change in more irregular nucleoli with numerous small fibrillar centres and abundant dense fibrillar component in GM-fed mice, modifications typical of increased metabolic rate. Accordingly, nucleoplasmic (snRNPs and SC-35) and nucleolar (fibrillarin) splicing factors are more abundant in hepatocyte nuclei of GM-fed than in control mice. In conclusion, our data suggest that GM soybean intake can influence hepatocyte nuclear features in young and adult mice; however, the mechanisms responsible for such alterations remain unknown.

Full-text

Available from: Stefano Gavaudan, May 21, 2015
0 Followers
 · 
174 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable.
    Critical Reviews in Toxicology 11/2013; 43(S2):1-24. DOI:10.3109/10408444.2013.842955 · 6.41 Impact Factor
  • Source
    01/2015; 27:4. DOI:10.1186/s12302-014-0034-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A lifelong feeding study with soybean from different production systems was carried out in the crustacean Daphnia magna (water flea), an acknowledged model organism for ecotoxicological studies. Experimental diets were prepared with soybean meal from different agriculture production systems: (i) genetically modified Roundup-Ready soy (Glyphosate-Tolerant), (ii) conventional soy and (iii) soy from organic agriculture (agriculture with neither synthetic pesticides nor synthetic fertilizers). Overall, feed produced from organic soybeans resulted in the highest fitness (higher survival, better growth and fecundity) in the model organism. Animals fed Roundup-Ready soybean consistently performed less well compared to animals fed either conventional or organic soybeans. We conclude that accumulation of herbicide residues in Roundup-Ready soy and related nutritional differences between the soy types may have caused the observed fitness differences. The results accentuate the need for further research clarifying qualitative aspects, including potential large-scale consequences for food and feed quality, of this dominant crop.
    Aquaculture Nutrition 06/2014; DOI:10.1111/anu.12199 · 1.67 Impact Factor