Article

Electroactive polymer-based devices for e-textiles in biomedicine.

Interdepartmental Research Centre E. Piaggio, University of Pisa, 56126 Pisa, Italy.
IEEE Transactions on Information Technology in Biomedicine (Impact Factor: 1.98). 10/2005; 9(3):295-318. DOI:10.1109/TITB.2005.854514
Source: PubMed

ABSTRACT This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.

0 0
 · 
1 Bookmark
 · 
62 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Purpose – Electrical impedance measurement and imaging are techniques that are widely used in a range of applications. Electro-conductive knitted structure is a major new development in wearable computing. The purpose of this paper is to carry out a preliminary investigation of applying electrical impedance analysis to predict the behavior of electro-conductive knitted structure. This can potentially pave the way for a low-cost solution for pressure mapping imaging. Design/methodology/approach – Electrical impedance tomography (EIT) has been used as a mapping technique for deformation imaging in conductive knitted fabric. EIT is an imaging system used to generate a map of electrical conductivity. Pressure and deformation mapping scanner is being developed based on electrical conductivity imaging of the conductive area generated in a fabric. The results are presented using these new sensors with various deformations. Findings – Experimental results show the feasibility of qualitative deformation imaging. In particular, it is promising that multiple deformations can be mapped using the proposed technique. The paper also demonstrates preliminary results regarding quantitative pressure and deformation mapping using EIT technique. Research limitations/implications – The results presented in the paper are laboratory-based experiments for proof of principle and will be evaluated in specific application areas in future. Originality/value – The paper shows, for the first time, detection of multiple pressure points as well as quantifying the pressure map using the new imaging sensor. The sensor proposed here can be used for robotic touch sensing application, as well as some biomechanical observations.
    Sensor Review 09/2012; 32(4):310-317. · 0.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To use e-textiles as a strain-resistance sensor they need to be both elastic and conductive. Three kinds of elastic-conductive webbings, including flat, tubular, and belt webbings, made of Lycra fiber and carbon coated polyamide fiber, were used in this study. The strain-resistance properties of the webbings were evaluated in stretch-recovery tests and measured within 30% strain. It was found that tensile hysteresis and contact resistance significantly influence the tensile elasticity and the resistance sensitivity of the webbings. The results showed that the webbing structure definitely contributes to the tensile hysteresis and contact resistance. The smaller the friction is among the yarns in the belt webbing, the smaller the tensile hysteresis loss. However the close proximity of the conductive yarns in flat and tubular webbings results in a lower contact resistance.
    Sensors 01/2011; 11(2):1693-705. · 1.95 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.
    Computational and Mathematical Methods in Medicine 01/2013; 2013:405325. · 0.79 Impact Factor