Article

S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction

Universität Heidelberg, Heidelburg, Baden-Württemberg, Germany
Molecular Therapy (Impact Factor: 6.43). 01/2006; 12(6):1120-9. DOI: 10.1016/j.ymthe.2005.08.002
Source: PubMed

ABSTRACT Myocardial infarction (MI) represents an enormous clinical challenge as loss of myocardium due to ischemic injury is associated with compromised left ventricular (LV) function often leading to acute cardiac decompensation or chronic heart failure. S100A1 was recently identified as a positive inotropic regulator of myocardial contractility in vitro and in vivo. Here, we explore the strategy of myocardial S100A1 gene therapy either at the time of, or 2 h after, MI to preserve global heart function. Rats underwent cryothermia-induced MI and in vivo intracoronary delivery of adenoviral transgenes (4 x 10(10) pfu). Animals received saline (MI), the S100A1 adenovirus (MI/AdS100A1), a control adenovirus (MI/AdGFP), or a sham operation. S100A1 gene delivery preserved global in vivo LV function 1 week after MI. Preservation of LV function was due mainly to S100A1-mediated gain of contractility of the remaining, viable myocardium since contractile parameters and Ca(2+) transients of isolated MI/AdS100A1 myocytes were significantly enhanced compared to myocytes isolated from both MI/AdGFP and sham groups. Moreover, S100A1 gene therapy preserved the cardiac beta-adrenergic inotropic reserve, which was associated with the attenuation of GRK2 up-regulation. Also, S100A1 overexpression reduced cardiac hypertrophy 1 week post-MI. Overall, our data indicate that S100A1 gene therapy provides a potential novel treatment strategy to maintain contractile performance of the post-MI heart.

Download full-text

Full-text

Available from: Oliver J Müller, Jun 29, 2015
0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic angiogenesis and myogenesis restore perfusion of ischemic myocardium and improve left ventricular contractility. These therapeutic modalities must be considered as complementary rather than competing to exploit their advantages for optimal beneficial effects. The resistant nature of cardiomyocytes to gene transfection can be overcome by ex vivo delivery of therapeutic genes to the heart using genetically modified stem cells. This review article gives an overview of different vectors and delivery systems in general used for therapeutic gene delivery to the heart and provides a critical appreciation of the ex vivo gene delivery approach using genetically modified stem cells to achieve angiomyogenesis for the treatment of infarcted heart.
    Molecular Medicine 14(1-2):79-86. DOI:10.2119/2007-00092.Haider · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 > S100A1 > S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe the standard time and frequency signal (STFS) broadcast via the INSAT satellite and its use in accurate time synchronization and frequency calibration anywhere in India. Under normal operation it is possible to achieve a synchronization accuracy of better than ±20 μs. For users with higher accuracy requirements we discuss the capability of the STFS broadcast to provide time synchronization with an accuracy better than 1 μs using a mode of operation which we call differential STFS. Here we further correct the error residuals in the received STFS using data from a reference station collocated with the uplinking site. Both analytical and actual experimental data are presented
    IEEE Transactions on Instrumentation and Measurement 05/1997; DOI:10.1109/19.571815 · 1.71 Impact Factor