Article

Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.

Department of Microbiology, Yamaguchi University School of Medicine, 1-1-1, Minamikogushi, Ube, Yamaguchi 755-8505, Japan.
Journal of Antimicrobial Chemotherapy (Impact Factor: 5.34). 12/2005; 56(5):861-8. DOI: 10.1093/jac/dki331
Source: PubMed

ABSTRACT Chlamydiae are obligate intracellular bacteria, causing a variety of diseases, i.e. pneumonia, sexually transmitted disease, conjunctivitis and zoonosis. Tryptophan depletion by interferon-gamma (IFN-gamma) is the most important host defence system against chlamydial infection. Thus chlamydial tryptophan metabolism is thought to play key roles for IFN-gamma resistance, persistent infection and host/tissue tropisms. We tested tryptophan derivatives for activity against chlamydia-infected cells.
Rates of chlamydial infection and sizes of the inclusions were evaluated by in vitro infection using three Chlamydiaceae species, Chlamydia trachomatis, Chlamydophila pneumoniae and Chlamydophila felis, which show significant divergence of tryptophan synthesis genes and different susceptibilities to IFN-gamma.
Melatonin and serotonin, which are recognized as neural hormones for maintenance of organism homeostasis, reduced chlamydial infection but not other bacterial growth tested here. Unlike IFN-gamma, melatonin limited infection of all three chlamydiae and the effects were not recovered by tryptophan supplementation. Melatonin treatment only of host cells could diminish infection and the infection reduction was neutralized by a pertussis toxin, an inhibitor of G proteins. Ligands of melatonin and serotonin receptors also hampered infection.
Inhibition mechanisms of chlamydial infection by melatonin and serotonin appear to be different from those of IFN-gamma and involve specific G-protein-coupled receptors. Melatonin is deemed to inhibit early progression of the chlamydial development cycle, such as establishment of intracellular infection and/or conversion from elementary body to reticulate body. Utilization of melatonin, serotonin or their derivatives may be advantageous for harmless prevention of chlamydial infection.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Earlier, it has been shown that some amino acids and their derivatives are able to regulate activities of adenylyl cyclase (AC) and guanylyl cyclase (GC) in free-living infusoria Dileptus anser and Tetrahymena pyriformis. The goal of this work consisted in studying the molecular mechanisms of action of methionine, tyrosine, alanine, and neurohormone serotonin on the activity of enzyme-cyclases and in identification of their specific receptors in D. anser and T. pyriformis. Methionine and serotonin significantly increased the basal AC activity in both infusoria; the effect of serotonin on AC in T. pyriformis took place with participation of the Ca2+-dependent form of AC and of the heterotrimeric G-proteins. The AC-stimulating effect of tyrosine and alanine was expressed weakly and was revealed only in D. anser. Serotonin in both infusoria and alanine in D. anser stimulated GC activity, whereas methionine and tyrosine did not affect GC. Methionine and serotonin were bound with a high affinity to the surface receptors of infusoria. The KD for [methyl-3H]methionine binding to D. anser and T. pyriformis were equal to 7.5 and 35.6 nM, and for [3H]serotonin binding, they were 2.7 and 4.7 nM, respectively. Alanine and tyrosine were bound to infusoria with low affinity. Thus, in the infusoria D. anser and T. pyriformis, there are chemosignal systems regulated by amino acids and their derivatives, including enzymes with cyclase activity. These systems are suggested to be similar to the hormonal signal systems of the higher eukaryotes and to be their predecessors.
    Cell and Tissue Biology 6(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin by exhibiting antioxidant, anti-aging, and immunomodulatory properties favorably modulate the immune function, protecting the hosts from several infectious diseases. Zinc is an essential trace element important for the efficiency of the immune system in reason of its widespread role in the activity of enzymes, transcription factors and cytokines. The etiology of Chagas' disease, caused by a protozoan parasite Trypanosoma cruzi, has been the focus of considerable discussion, although chronic phase still remains not fully understood. This study showed that zinc and melatonin treatment did not affect the percentage of both CD4+ and CD8+ T lymphocytes subsets in chronically infected animals. Increased levels of IL-2 and IL-10, as well as, enhanced thymocyte proliferation in T. cruzi infected groups under zinc and melatonin therapy was observed as compared to untreated group. Conversely, during the chronic phase of infection, macrophages counts were reduced in melatonin and zinc-melatonin treated animals. The combined actions of zinc and melatonin have beneficial effects in counteracting parasite-induced immune dysregulation, protecting animals against the harmful actions of chronic T. cruzi infection. Furthermore, our results provide an experimental basis for further studies on the role of immunomodulatory therapies.
    Cytokine 09/2011; 56(3):627-32. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic cardiomyopathy is the most important clinical form of Chagas disease, and it is characterised by myocarditis that is associated with fibrosis and organ dysfunction. Alternative treatment options are important tools to modulate host immune responses. The main goal of this work was to evaluate the anti-inflammatory actions of melatonin during the chronic phase of Chagas disease. TNF-α, IL-10 and nitrite concentrations were evaluated as predictive factors of immune modulation. Creatine phosphokinase-MB (CK-MB), cardiac inflammatory foci and heart weight were assessed to evaluate the efficacy of the melatonin treatment. Male Wistar rats were infected with 1X10(5) blood trypomastigotes of the Y strain of T. cruzi and kept untreated for 60 days to mimic chronic infection. After this period, the rats were orally treated with melatonin 50mg/kg/day, and the experiments were performed 90, 120, and 180 days post-infection. Melatonin treatment significantly increased the concentration of IL-10 and reduced the concentrations of NO and TNF-α produced by cardiomyocytes. Furthermore, it led to decreased heart weight, serum CK-MB levels and inflammatory foci when compared to the untreated and infected control groups. We conclude that melatonin therapy is effective at protecting animals against the harmful cardiac inflammatory response that is characteristic of chronic T. cruzi infection.
    Acta tropica 09/2013; · 2.79 Impact Factor

Full-text (2 Sources)

View
24 Downloads
Available from
May 16, 2014