Infiltration of tumor-reactive transforming growth factor-beta insensitive CD8+ T cells into the tumor parenchyma is associated with apoptosis and rejection of tumor cells

Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA, and Institute of Urology, The First Hospital, Peking University, Beijing, China.
The Prostate (Impact Factor: 3.57). 02/2006; 66(3):235-47. DOI: 10.1002/pros.20340
Source: PubMed


TGF-beta is a potent immunosuppressant. High levels of TGF-beta produced by cancer cells have a negative inhibition effect on surrounding host immune cells and leads to evasion of the host immune surveillance and tumor progression. In the present study, we report a distinct ability of tumor reactive, TGF-beta-insensitive CD8+ T cells to infiltrate into established tumors, secrete relevant cytokines, and induce apoptosis of tumor cells.
CD8+ T cells were isolated from the spleens of C57BL/6 mice, which were primed with irradiated mouse prostate cancer cells, the TRAMP-C2 cells. After ex vivo expansion, these tumor reactive CD8+ cells were rendered TGF-beta-insensitive by infection with a retroviral (MSCV)-mediated dominant negative TGF-beta type II receptor (TbetaRIIDN). Control CD8+ cells consist of those transfected with the GFP-only empty vector and naïve CD8+ T cells. Recipient mice were challenged with a single injection of TRAMP-C2 cells 21 days before adoptive transfer of CD8+ T cells was performed. Forty days after the adoptive transfer, all animals were sacrificed. The presence of pulmonary metastases was evaluated pathologically. Serial slides of malignant tissues were used for immunofluorescent staining for different kinds of immune cell infiltration, cytokines, and apoptosis analysis.
Pulmonary metastases were either eliminated or significantly reduced in the group receiving adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells (3 out of 12) when compared to GFP controls (9 out of 12), and naïve CD8+ T cells (12 out of 12). Results of immunofluorescent studies demonstrated that only tumor-reactive TGF-beta-insensitive CD8+ T cells were able to infiltrate into the tumor and mediate apoptosis when compared to CD4+ T cells, NK cells, and B cells. A large amount of cytokines such as perforin, nitric oxide, IFN-gamma, IL-2, TNF-alpha were secreted in tumor tissue treated with tumor-reactive TGF-beta-insensitive CD8+ T cells. No immune cells infiltration and cytokine secretion were detected in tumor tissues treated with naïve T cells and GFP controls.
Our results demonstrate the mechanism of anti-tumor effect of tumor-reactive TGF-beta-insensitive CD8+ T cells that adoptive transfer of these CD8+ T cells resulted in infiltration of these immune cells into the tumor parenchyma, secretion of relevant cytokines, and induction of apoptosis in tumor cells. These results support the concept that tumor-reactive TGF-beta-insensitive CD8+ T cells may prove beneficial in the treatment of advanced cancer patients.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer immunotherapy utilizes vaccines targeting tumor antigens or tumor endothelium to prevent or regress tumors. Many cancer vaccines are designed to induce antigen-specific effector T cells that migrate to the tumor site. In an optimal situation, the effector T cells penetrate the tumor, release their effector molecules, induce tumor cell death and tumor regression. However, the tumor microenvironment is frequently immunosuppressive and contributes to a state of immune ignorance, impacting on the vaccine's ability to break tolerance to tumor antigen/s. This review discusses the factors in the tumor microenvironment that can affect the efficacy of cancer vaccines. In particular, the review focuses on pathways leading to effector T cell penetration of tumors or the inhibition of this process.
    Immunological investigations 02/2006; 35(3-4):359-94. DOI:10.1080/08820130600755009 · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With respect to CD8 effector T cells, interleukin-12 (IL-12) and transforming growth factor beta (TGFbeta) are 2 cytokines that exert opposing effects. IL-12 promotes antitumor immune responses by augmenting activated CD8 T-cell proliferation and interferon-gamma secretion. Conversely, TGFbeta generates a permissive environment for cancer growth, in part by antagonizing the effects of immunomodulatory cytokines, including IL-12. We demonstrate that TGFbeta-resistant T cells are capable of sustaining IL-12-induced mitogenesis and interferon-gamma secretion in a TGFbeta-rich milieu. Furthermore, in 2 murine tumor models associated with high TGFbeta1 levels in the local microenvironment, treatment with IL-12 and adoptively transferred TGFbeta-resistant T cells provided improved survival times. These results suggest that combining IL-12 with TGFbeta neutralization strategies may be effective in enhancing antitumor immune responses.
    Journla of Immunotherapy 06/2007; 30(5):479-89. DOI:10.1097/CJI.0b013e318031a2b2 · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are highly potent initiators of the immune response, but DC effector functions are often inhibited by immunosuppressants such as transforming growth factor beta (TGF-beta). The present study was conducted to develop a treatment strategy for prostate cancer using a TGF-beta-insensitive DC vaccine. Tumor lysate-pulsed DCs were rendered TGF-beta insensitive by dominant-negative TGF-beta type II receptor (TbetaRIIDN), leading to the blockade of TGF-beta signals to members of the Smad family, which are the principal cytoplasmic intermediates involved in the transduction of signals from TGF-beta receptors to the nucleus. Expression of TbetaRIIDN did not affect the phenotype of transduced DCs. Phosphorylated Smad-2 was undetectable and expression of surface co-stimulatory molecules (CD80/CD86) were upregulated in TbetaRIIDN DCs after antigen and TGF-beta1 stimulation. Vaccination of C57BL/6 tumor-bearing mice with the TbetaRIIDN DC vaccine induced potent tumor-specific cytotoxic T lymphocyte responses against TRAMP-C2 tumors, increased serum IFN-gamma and IL-12 level, inhibited tumor growth and increased mouse survival. Furthermore, complete tumor regression occurred in two vaccinated mice. These results demonstrate that blocking TGF-beta signals in DC enhances the efficacy of DC-based vaccines.
    Cancer Immunology and Immunotherapy 12/2007; 56(11):1785-93. DOI:10.1007/s00262-007-0322-3 · 3.94 Impact Factor
Show more

Similar Publications