Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.

Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA.
Genetics (Impact Factor: 4.39). 01/2006; 172(1):507-17. DOI: 10.1534/genetics.105.047894
Source: PubMed

ABSTRACT Polyploidy has occurred throughout the evolutionary history of all eukaryotes and is extremely common in plants. Reunification of the evolutionarily divergent genomes in allopolyploids creates regulatory incompatibilities that must be reconciled. Here we report genomewide gene expression analysis of Arabidopsis synthetic allotetraploids, using spotted 70-mer oligo-gene microarrays. We detected >15% transcriptome divergence between the progenitors, and 2105 and 1818 genes were highly expressed in Arabidopsis thaliana and A. arenosa, respectively. Approximately 5.2% (1362) and 5.6% (1469) genes displayed expression divergence from the midparent value (MPV) in two independently derived synthetic allotetraploids, suggesting nonadditive gene regulation following interspecific hybridization. Remarkably, the majority of nonadditively expressed genes in the allotetraploids also display expression changes between the parents, indicating that transcriptome divergence is reconciled during allopolyploid formation. Moreover, >65% of the nonadditively expressed genes in the allotetraploids are repressed, and >94% of the repressed genes in the allotetraploids match the genes that are expressed at higher levels in A. thaliana than in A. arenosa, consistent with the silencing of A. thaliana rRNA genes subjected to nucleolar dominance and with overall suppression of the A. thaliana phenotype in the synthetic allotetraploids and natural A. suecica. The nonadditive gene regulation is involved in various biological pathways, and the changes in gene expression are developmentally regulated. In contrast to the small effects of genome doubling on gene regulation in autotetraploids, the combination of two divergent genomes in allotetraploids by interspecific hybridization induces genomewide nonadditive gene regulation, providing a molecular basis for de novo variation and allopolyploid evolution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allopolyploidy is an important process during plant evolution that results in the reunion of two divergent genomes into a common nucleus. Many of the immediate as well as longer-term genomic and epigenetic responses to polyploidy have become appreciated. To investigate the modifications of gene expression at the proteome level caused by allopolyploid formation, we conducted a comparative analysis of cotton seed proteomes from the allopolyploid Gossypium hirsutum (AD genome) and its model A-genome and D-genome diploid progenitors. An unexpectedly high level of divergence among the three proteomes was found, with about one-third of all protein forms being genome specific. Comparative analysis showed that there is a higher degree of proteomic similarity between the allopolyploid and its D-genome donor than its A-genome donor, reflecting a biased accumulation of seed proteins in the allopolyploid. Protein identification and genetic characterization of high-abundance proteins revealed that two classes of seed storage proteins, vicilins and legumins, compose the major component of cotton seed proteomes. Analyses further indicate differential regulation or modification of homoeologous gene products, as well as novel patterns in the polyploid proteome that may result from the interaction between homoeologous gene products. Our findings demonstrate that genomic merger and doubling have consequences that extend beyond the transcriptome into the realm of the proteome and that unequal expression of proteins from diploid parental genomes may occur in allopolyploids.
    Genetics 09/2011; 189(3):1103-15. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyploidy, the condition of possessing more than two complete genomes in a cell, has intrigued biologists for almost a century. Polyploidy is found in many plants and some animal species and today we know that polyploidy has had a role in the evolution of all angiosperms. Despite its widespread occurrence, the direct effect of polyploidy on evolutionary success of a species is still largely unknown. Over the years many attractive hypotheses have been proposed in an attempt to assign functionality to the increased content of a duplicated genome. Among these hypotheses are the proposal that genome doubling confers distinct advantages to a polyploid and that these advantages allow polyploids to thrive in environments that pose challenges to the polyploid's diploid progenitors. This article revisits these long-standing questions and explores how the integration of recent genomic developments with ecological, physiological and evolutionary perspectives has contributed to addressing unresolved problems about the role of polyploidy. Although unsatisfactory, the current conclusion has to be that despite significant progress, there still isn't enough information to unequivocally answer many unresolved questions about cause and effect of polyploidy on evolutionary success of a species. There is, however, reason to believe that the increasingly integrative approaches discussed here should allow us in the future to make more direct connections between the effects of polyploidy on the genome and the responses this condition elicits from the organism living in its natural environment.Heredity advance online publication, 14 November 2012; doi:10.1038/hdy.2012.79.
    Heredity 11/2012; · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS) are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F(1) and F(2) hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F(1) and 22% of 36 F(2) hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F(1) and F(2) plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids.
    PLoS ONE 01/2011; 6(8):e23511. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014

Similar Publications