Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment.

Division of Experimental Hematology, Children's Hospital Medical Center, University of Cincinnati, OH 45229, USA.
Blood (Impact Factor: 10.43). 02/2006; 107(1):98-105. DOI: 10.1182/blood-2005-05-2171
Source: PubMed

ABSTRACT Rho family GTPases are key signal transducers in cell regulation. Although a body of literature has implicated the Rho family members Rac1 and Rac2 in multiple hematopoietic-cell functions, the role of Cdc42 in hematopoiesis remains unclear. Here we have examined the hematopoietic properties and the hematopoietic stem/progenitor cell (HSP) functions of gene-targeted mice carrying null alleles of cdc42gap, a negative regulator of Cdc42. The Cdc42GAP-/- fetal liver and bone marrow cells showed a 3-fold increase in Cdc42 activity but normal Rac and RhoA activities, indicating that Cdc42GAP knockout resulted in a gain of Cdc42 activity in the hematopoietic tissues. Cdc42GAP-/- mice were anemic. The cellularity of fetal liver and bone marrow, the number and composition percentage of HSPs, and the erythroid blast-forming unit and colony-forming unit (BFU-E/CFU-E) activities were significantly reduced in the homozygous mice. The decrease in HSP number was associated with increased apoptosis of the Cdc42GAP-/- HSPs and the activation of JNK-mediated apoptotic machinery. Moreover, homozygous HSPs showed impaired cortical F-actin assembly, deficiency in adhesion and migration, and defective engraftment. These results provide evidence that Cdc42 activity is important for erythropoiesis and for multiple HSP functions, including survival, adhesion, and engraftment.

Download full-text


Available from: Marie-Dominique Filippi, Oct 13, 2014
  • Source
    Developmental Biology 02/2013; 374(1):46. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The BNIP-2 and Cdc42GAP Homology (BCH) domains constitute a new and expanding family of highly conserved scaffold protein domains that regulate Rho, Ras and MAPK signaling, leading to cell growth, apoptosis, morphogenesis, migration and differentiation. Such versatility is achieved via their ability to target small GTPases and their immediate regulators such as GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), their ability to form intra-molecular or inter-molecular interaction with itself or with other BCH domains, and also by their ability to bind diverse cellular proteins such as membrane receptors, isomerase, caspases and metabolic enzymes such as glutaminase. The presence of BCH and BCH-like domains in various proteins and their divergence from the ancestral lipid-binding CRAL-TRIO domain warrant the need to examine closely their structural, functional and regulatory plasticity in isolation or in concert with other protein modules present in the same proteins.
    FEBS letters 04/2012; 586(17):2674-91. DOI:10.1016/j.febslet.2012.04.023 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.
    Molecular biology of the cell 09/2010; 21(18):3232-46. DOI:10.1091/mbc.E09-05-0408 · 5.98 Impact Factor