Comparative Opsonic and Protective Activities of Staphylococcus aureus Conjugate Vaccines Containing Native or Deacetylated Staphylococcal Poly-N-Acetyl- -(1-6)-Glucosamine

Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Infection and Immunity (Impact Factor: 4.16). 11/2005; 73(10):6752-62. DOI: 10.1128/IAI.73.10.6752-6762.2005
Source: PubMed

ABSTRACT Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPNAG; 15% acetylation) were conjugated to the carrier protein diphtheria toxoid (DT) and used to immunize animals. Mice responded in a dose-dependent fashion to both conjugate vaccines, with maximum antibody titers observed at the highest dose and 4 weeks after the last of three weekly immunizations. PNAG-DT and dPNAG-DT vaccines were also very immunogenic in rabbits. Antibodies raised to the conjugate vaccines in rabbits mediated the opsonic killing of various staphylococcal strains, but the specificity of the opsonic killing was primarily to dPNAG, as this antigen inhibited the killing of S. aureus strains by both PNAG- and dPNAG-specific antibodies. Passive immunization of mice with anti-dPNAG-DT rabbit sera showed significant levels of clearance of S. aureus from the blood (54 to 91%) compared to control mice immunized with normal rabbit sera, whereas PNAG-specific antibodies were ineffective at clearing S. aureus. Passive immunization of mice with a goat antiserum raised to the dPNAG-DT vaccine protected against a lethal dose of three different S. aureus strains. Overall, these data show that immunization of animals with a conjugate vaccine of dPNAG elicit antibodies that mediated opsonic killing and protected against S. aureus infection, including capsular polysaccharide types 5 and 8 and an untypable strain.

Download full-text


Available from: Donald A Goldmann, May 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus and Staphylococcus epidermidis cause dangerous and difficult to treat medical device-related infections through their ability to form biofilms. Extracellular poly-N-acetylglucosamine (PNAG) facilitates biofilm formation and is a vaccination target, yet details of its biosynthesis by the icaADBC gene products is limited. IcaC is the proposed transporter for PNAG export, however a comparison of the Ica proteins to homologous exo-polysaccharide synthases suggests that the common IcaAD protein components both synthesise and transport the PNAG. The limited distribution of icaC to the Staphylococcaceae and its membership of a family of membrane-bound acyltransferases, leads us to suggest that IcaC is responsible for the known O-succinylation of PNAG that occurs in staphylococci, identifying a potentially new therapeutic target specific for these bacteria.
    FEBS letters 04/2014; DOI:10.1016/j.febslet.2014.04.002 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus epidermidis, the most frequently isolated coagulase-negative staphylococcus, is the leading cause of infection related to implanted medical devices (IMDs). This is directly related to its capability to establish multilayered, highly structured biofilms on artificial surfaces. At present, conventional systemic therapies using standard antimicrobial agents represent the main strategy to treat and prevent medical device-associated infections. However, device-related infections are notoriously difficult to treat and bacteria within biofilm communities on the surface of IMDs frequently outlive treatment, and removal of the medical device is often required for successful therapy. Importantly, major advances in this research area have been made, leading to a greater understanding of the complexities of biofilm formation of S. epidermidis and resulting in significant developments in the treatment and prevention of infections related to this member of the coagulase-negative group of staphylococci. This review will examine the pathogenesis of the clinically significant S. epidermidis and provide an overview of the conventional and emerging antibiofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.
    Journal of Pharmacy and Pharmacology 01/2009; 60(12):1551-71. DOI:10.1211/jpp/60.12.0001 · 2.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most field isolates of the swine pathogen Actinobacillus pleuropneumoniae form tenacious biofilms on abiotic surfaces in vitro. We purified matrix polysaccharides from biofilms produced by A. pleuropneumoniae field isolates IA1 and IA5 (serotypes 1 and 5, respectively), and determined their chemical structures by using NMR spectroscopy. Both strains produced matrix polysaccharides consisting of linear chains of N-acetyl-D-glucosamine (GlcNAc) residues in beta(1,6) linkage (poly-beta-1,6-GlcNAc or PGA). A small percentage of the GlcNAc residues in each polysaccharide were N-deacetylated. These structures were nearly identical to those of biofilm matrix polysaccharides produced by Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. PCR analyses indicated that a gene encoding the PGA-specific glycoside transferase enzyme PgaC was present on the chromosome of 15 out of 15 A. pleuropneumoniae reference strains (serotypes 1-12) and 76 out of 77 A. pleuropneumoniae field isolates (serotypes 1, 5 and 7). A pgaC mutant of strain IA5 failed to form biofilms in vitro, as did wild-type strains IA1 and IA5 when grown in broth supplemented with the PGA-hydrolyzing enzyme dispersin B. Treatment of IA5 biofilms with dispersin B rendered them more sensitive to killing by ampicillin. Our findings suggest that PGA functions as a major biofilm adhesin in A. pleuropneumoniae. Biofilm formation may have relevance to the colonization and pathogenesis of A. pleuropneumoniae in pigs DA - 20070508IS - 0882-4010 (Print)LA - engPT - Journal ArticlePT - Research Support, N.I.H., ExtramuralPT - Research Support, Non-U.S. Gov'tPT - Research Support, U.S. Gov't, Non-P.H.SRN - 0 (Adhesins, Bacterial)RN - 0 (Anti-Bacterial Agents)RN - 0 (Bacterial Proteins)RN - 0 (Galactans)RN - 0 (Polysaccharides, Bacterial)RN - 69-53-4 (Ampicillin)RN - 78393-48-3 (poly-N-acetylgalactosamine)RN - EC 2.4.- (Glycosyltransferases)SB - IM