Article

Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus.

Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
The Journal of Immunology (Impact Factor: 5.52). 11/2005; 175(7):4189-93.
Source: PubMed

ABSTRACT Recent studies indicate that TLRs are critical in generating innate immune responses during infection with HSV-1. In this study, we investigated the role of TLR2 signaling in regulating the production of neuroimmune mediators by examining cytokine and chemokine expression using primary microglial cells obtained from TLR2-/- as well as wild-type mice. Data presented here demonstrate that TLR2 signaling is required for the production of proinflammatory cytokines and chemokines: TNF-alpha, IL-1beta, IL-6, IL-12, CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5. CXCL9 and CXCL10 were also induced by HSV, but their production was not dependent upon TLR2 signaling. Because TLR2-/- mice display significantly reduced mortality and diminished neuroinflammation in response to brain infection with HSV, the TLR2-dependent cytokines identified here might function as key players influencing viral neuropathogenesis.

0 Bookmarks
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex viruses (HSV) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a life-long source of recurrent infection. In this complex process, HSV triggers and neutralizes innate immunity. Therefore, a dynamic equilibrium between HSV and the innate immune system determines the outcome of viral infection. Detection of HSV involves pathogen recognition receptors which include Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I) like receptors, and cytosolic DNA sensors. Moreover, innate components or pathways exist to sense membrane fusion upon viral entry into host cells. Consequently, this surveillance network activates downstream transcription factors, leading to the induction of type I interferon (IFN) and inflammatory cytokines. Not surprisingly, with the capacity to establish chronic infection HSV has evolved strategies that modulate or evade innate immunity. In this review, we describe recent advances pertinent to the interplay of HSV and the induction of innate immunity mediated by pathogen recognition receptors or pathways.
    Journal of Molecular Biology 11/2013; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglia plays a crucial role during virus pathogenesis in the central nervous system (CNS). Infection by rabies virus (RABV) causes a fatal infection in the CNS of all warm-blooded animals. However, the microglial responses to RABV infection have been scarcely reported. To better understand microglia-RABV interactions at the transcriptional level, a genome wide gene expression profile in mouse microglial cells line BV2 was performed using microarray analysis. The global messenger RNA changes in murine microglial cell line BV2 after 12, 24 and 48 h of infection with rabies virus CVS-11 strain were investigated using DNA Microarray and quantitative real-time PCR. Infection of CVS-11 at different time points induced different gene expression signatures in BV2 cells. The expression patterns of differentially expressed genes are shown by K-means clustering in four clusters in RABV- or mock-infected microglia at 12, 24 and 48 hours post infection (hpi). Gene ontology and network analysis of the differentially expressed genes in responses to RABV were performed by the Ingenuity Pathway Analysis system (IPA, Ingenuity® Systems, http://www.ingenuity.com). The results revealed that 28 genes were significantly up-regulated (P<0.01) and 1 gene was significantly down-regulated (P<0.01) in microglial cells at 12 hpi, 72 genes were significantly up-regulated (P<0.01) and 24 genes were significantly down-regulated (P<0.01) at 24 hpi, and 671 genes were significantly up-regulated (P<0.01) and 190 genes were significantly down-regulated (P<0.01) at 48 hpi. Genes in BV2 were significantly regulated (P<0.01) in response to RABV infection and they were found to be interferon stimulated genes (Isg15, Isg20, Oasl1, Oasl2, Ifit2, Irf7 and Ifi203), chemokine genes (Ccl5, Cxcl10 and Ccrl2) and the proinflammatory factor gene (Interleukin 6). The results indicated that the differentially expressed genes from microglial cells after RABV infection were mainly involved in innate immune responses, inflammatory responses and host antiviral responses.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 09/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Globoid cell leukodystrophy is a lysosomal storage disease characterized by the loss of galactocerebrosidase. Galactocerebrosidase loss leads to the accumulation of psychosine and subsequent oligodendrocyte cell death, demyelination, macrophage recruitment, and astroglial activation and proliferation. To date, no studies have elucidated the mechanism of glial cell activation and cytokine and chemokine up-regulation and release. We explored a novel explanation for the development of the pathological changes in the early stages of globoid cell leukodystrophy associated with toll-like receptor (TLR) 2 up-regulation in the hindbrain and cerebellum as a response to dying oligodendrocytes. TLR2 up-regulation on microglia/macrophages coincided with morphological changes consistent with activation at 2 and 3 weeks of age. TLR2 up-regulation on activated microglia/macrophages resulted in astrocyte activation and marked up-regulation of cytokines/chemokines. Because oligodendrocyte cell death is an important feature of globoid cell leukodystrophy, we tested the ability of TLR2 reporter cells to respond to oligodendrocyte cell death. These reporter cells responded in vitro to medium conditioned by psychosine-treated oligodendrocytes, indicating the likelihood that oligodendrocytes release a TLR2 ligand during apoptosis. TLRs are a member of the innate immune system and initiate immune and inflammatory events; therefore, the identification of TLR2 as a potential driver in the activation of central nervous system glial activity in globoid cell leukodystrophy may provide important insight into its pathogenesis.
    American Journal Of Pathology 12/2013; · 4.52 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
Jun 11, 2014