Mechanisms of Ischemic Neuroprotection by Acetyl-l-carnitine

Department of Anesthesiology, University of Maryland, Baltimore, Baltimore, Maryland, United States
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 09/2005; 1053(1):153-61. DOI: 10.1196/annals.1344.013
Source: PubMed

ABSTRACT Acetyl-L-carnitine is a naturally occurring substance that, when administered at supraphysiologic concentrations, is neuroprotective in several animal models of global and focal cerebral ischemia. Three primary mechanisms of action are supported by neurochemical outcome measures performed with these models and with in vitro models of acute neuronal cell death. The metabolic hypothesis is based on the oxidative metabolism of the acetyl component of acetyl-L-carnitine and is a simple explanation for the reduction in postischemic brain lactate levels and elevation of ATP seen with drug administration. The antioxidant mechanism is supported by reduction of oxidative stress markers, for example, protein oxidation, in both brain tissue and cerebrospinal fluid. The relatively uncharacterized mechanism of inhibiting excitotoxicity could be extremely important in both acute brain injury and chronic neurodegenerative disorders. New experiments performed with primary cultures of rat cortical neurons indicate that the presence of acetyl-L-carnitine significantly inhibits both acute and delayed cell death following exposure to NMDA, an excitotoxic glutamate antagonist. Finally, several other mechanisms of action are possible, including a neurotrophic effect of acetyl-L-carnitine and inhibition of mitochondrial permeability transition. While the multiple potential mechanisms of neuroprotection by acetyl-L-carnitine limit an accurate designation of the most important mode of action, they are compatible with the concept that several brain injury pathways must be inhibited to optimize therapeutic efficacy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24 hr to propofol at 10, 50, 100, 300 and 600μM, with or without L-Ca (10μM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: 1) the effects of propofol on neural stem cell proliferation; 2) the nature of propofol-induced neurotoxicity; 3) the degree of protection afforded by L-Ca; and 4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically-relevant concentration (50μM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100μM. The oxidative damage at 50μM propofol was blocked by L-Ca. Thus, clinically-relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production.
    NeuroToxicology 04/2014; DOI:10.1016/j.neuro.2014.03.011 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a consequence of an ischaemic episode, the energy production is disturbed, leading to neuronal cell death. Despite intensive research, the quest for promising neuroprotective drugs has largely failed, not only because of ineffectiveness, but also because of serious side-effects and dosing difficulties. Acetyl-L-carnitine (ALC) is an essential nutrient which plays a key role in the energy metabolism by transporting fatty acids into the mitochondria for β-oxidation. It is an endogenous compound and can be used at high dose without toxicity in research into ischaemia. Its neuroprotective properties have been reported in many studies, but its potential action on long-term potentiation (LTP) and dendritic spine density has not been described to date. The aim of the present study was an evaluation of the possible protective effect of ALC after the ischaemic insult inflicted on the hippocampal synaptic plasticity in a 2-vessel occlusion (2VO) model in rat. For electrophysiological measurements, LTP was tested on hippocampal slices. The Golgi-Cox staining technique was used to determine the spine density. 2VO resulted in a decreased, unstable LTP and a significant loss of dendritic spines. ALC administered after 2VO was not protective, but as pretreatment prior to 2VO it restored the LTP nearly to the control level. This finding paralleled the histological analysis: ALC pretreatment resulted in the reappearance of dendritic spines on the CA1 pyramidal cells. Our data demonstrate that ALC administration can restore the hippocampal function and the spine density. ALC probably acts by enhancing the aerobic metabolic pathway, which is inhibited during and following the ischaemic attack.
    Neuroscience 04/2014; 269. DOI:10.1016/j.neuroscience.2014.03.055 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is the administration of alternative energy substrates ("biofuels") to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-L-carnitine each increase neuronal respiratory capacity in vitro either in the absence of or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0-10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. A 30-min exposure to 100 μM glutamate impaired respiratory capacity for DIV 14, but not DIV 7, neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25 % and also reduced respiratory capacity with glucose plus pyruvate, lactate, or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still, at least, as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity.
    Translational Stroke Research 12/2013; 4(6):643-51. DOI:10.1007/s12975-013-0275-0 · 1.94 Impact Factor