Article

Genomic regulation after CD40 stimulation in microglia: relevance to Alzheimer's disease.

The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA.
Molecular Brain Research (Impact Factor: 2). 11/2005; 140(1-2):73-85. DOI: 10.1016/j.molbrainres.2005.07.014
Source: PubMed

ABSTRACT Key pathological processes in Alzheimer's disease (AD) include the accumulation of amyloid beta peptide (Abeta) which, in excess, triggers pathological cascades including widespread inflammation, partly reflected by chronic microglial activation. It has previously been suggested that CD40/CD40L interaction promotes AD like pathology in transgenic mice. Thus, amyloid burden, gliosis and hyperphosphorylation of tau are all reduced in transgenic models of AD lacking functional CD40L. We therefore hypothesized that cellular events leading to altered APP metabolism, inflammation and increased tau phosphorylation underlying these observations would be regulated at the genomic level. In the present report, we used the Affymetrix (GeneChip) oligonucleotide microarray U133A to gain insight into the global and simultaneous transcriptomic changes in response to microglia activation after CD40/CD40L ligation. As expected, regulation of elements of the NF-kappaB signaling, chemokine and B cell signaling pathways was observed. Taken together, our data also suggest that CD40 ligation in human microglia specifically perturbs many genes associated with APP processing.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is neuropathologically characterized by excessive beta -amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Although the etiology of genetic cases of AD has been attributed to mutations in presenilin and amyloid precursor protein (APP) genes, in most sporadic cases of AD, the etiology is still unknown and various predisposing factors could contribute to the pathology of AD. Predominant among these possible predisposing factors that have been implicated in AD are age, hypertension, traumatic brain injury, diabetes, chronic neuroinflammation, alteration in calcium levels and oxidative stress. Since both inflammation and altered calcium levels are implicated in the pathogenesis of AD, we wanted to study the effect of altered levels of calcium on inflammation and the subsequent effect of selective calcium channel blockers on the production of pro-inflammatory cytokines and chemokines. Our hypothesis is that Aβ, depending on it conformation, may contribute to altered levels of intracellular calcium in neurons and glial cells. We wanted to determine which conformation of Aβ was most pathogenic in terms of increasing inflammation and calcium influx and further elucidate the possibility of a link between altered calcium levels and inflammation. In addition, we wanted to test whether calcium channel blockers could inhibit the inflammation mediated by the most pathogenic form of Aβ, by antagonizing the calcium influx triggered by Aβ. Our results in human glial and neuronal cells demonstrate that the high molecular weight oligomers are the most potent at stimulating the release of pro-inflammatory cytokines IL-6 and IL-8 as well as increasing intracellular levels of calcium compared to other conformations of Aβ. Further, L-type calcium channel blockers and calmodulin kinase inhibitors are able to significantly reduce the levels of IL-6 and IL-8. These results suggest that Aβ-induced alteration of intracellular calcium levels contributes to its pro-inflammatory effect.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that transgenic mice carrying a mutant human APP but deficient in CD40L, display a decrease in astrocytosis and microgliosis associated with a lower amount of deposited Abeta. Furthermore, an anti-CD40L treatment causes a diminution of Abeta pathology in the brain and an improved performance in several cognitive tasks in the double transgenic PSAPP mouse model. Although these data suggest a potential role for CD40L in Alzheimer's disease pathology in transgenic mice they do not cast light on whether this effect is due to inhibition of signaling via CD40 or whether it is due to the mitigation of some other unknown role of CD40L. In the present report we have generated APP and PSAPP mouse models with a disrupted CD40 gene and compared the pathological features (such as amyloid burden, astrocytosis and microgliosis that are typical of Alzheimer's disease-like pathology in these transgenic mouse strains) with appropriate controls. We find that all these features are reduced in mouse models deficient for CD40 compared with their littermates where CD40 is present. These data suggest that CD40 signaling is required to allow the full repertoire of AD-like pathology in these mice and that inhibition of the CD40 signaling pathway is a potential therapeutic strategy in Alzheimer's disease.
    Journal of Neuroinflammation 02/2006; 3:3. DOI:10.1186/1742-2094-3-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD40 and its cognate ligand (CD40L) are a pair of regulators of pro-inflammatory and immune responses. In the central nervous system (CNS), CD40 is expressed on a variety of cells, including vascular endothelial cells, smooth muscle cells, astrocytes and microglia (the brain macrophages, being the most sensitive cell type to respond to CD40 ligand). Interaction between CD40 on microglia and CD40L presented by infiltrating T lymphocytes and other resident CNS cells triggers a series of intracellular signaling events that promote the production of a wide array of cytokines, chemokines and neurotoxins. Thus, both molecules serve as amplifiers of pro-inflammatory and immune responses in the CNS and constitute important molecular targets for therapeutic intervention of diseases.
    Cellular & molecular immunology 07/2006; 3(3):163-9.