Article

The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.

Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA.
Plant physiology (Impact Factor: 7.39). 11/2005; 139(2):847-56. DOI: 10.1104/pp.105.068254
Source: PubMed

ABSTRACT Plant acclimation to environmental stress is controlled by a complex network of regulatory genes that compose distinct stress-response regulons. In contrast to many signaling and regulatory genes that are stress specific, the zinc-finger protein Zat12 responds to a large number of biotic and abiotic stresses. Zat12 is thought to be involved in cold and oxidative stress signaling in Arabidopsis (Arabidopsis thaliana); however, its mode of action and regulation are largely unknown. Using a fusion between the Zat12 promoter and the reporter gene luciferase, we demonstrate that Zat12 expression is activated at the transcriptional level during different abiotic stresses and in response to a wound-induced systemic signal. Using Zat12 gain- and loss-of-function lines, we assign a function for Zat12 during oxidative, osmotic, salinity, high light, and heat stresses. Transcriptional profiling of Zat12-overexpressing plants and wild-type plants subjected to H(2)O(2) stress revealed that constitutive expression of Zat12 in Arabidopsis results in the enhanced expression of oxidative- and light stress-response transcripts. Under specific growth conditions, Zat12 may therefore regulate a collection of transcripts involved in the response of Arabidopsis to high light and oxidative stress. Our results suggest that Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.

0 Bookmarks
 · 
211 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chickpea is an important legume crop plant and various abiotic stresses are the major constraints affecting its overall productivity. For discovery of candidate genes involved in abiotic stress responses, we employed RNA sequencing for transcriptome profiling of roots and shoots of chickpea seedlings subjected to desiccation, salinity, and cold stresses. In total, we generated more than 250 million high-quality reads from non-stressed and stressed tissue samples. Data analyses provided a comprehensive view of the dynamic transcriptional response of chickpea tissues to different abiotic stresses. Differential expression analysis identified a total of 11,640 chickpea transcripts showing response to at least one of the stress conditions. The reference-based transcriptome assembly was generated and at least 3,536 previously unannotated gene loci differentially expressed under abiotic stress conditions were identified. We observed extensive transcriptional reprogramming of genes involved in transcription regulation, energy metabolism, photosynthesis, hormonal responses, secondary metabolite biosynthesis and osmoprotectant metabolism under stress conditions. In addition, genes involved in post-translational modifications, RNA metabolic processes, and epigenetic regulation were also significantly highlighted. The comprehensive transcriptome analyses presented in this study revealed several potential key regulators of plant response to abiotic stresses and open avenues to carry out functional and applied genomic studies for improving abiotic stress tolerance in chickpea.
    Plant Molecular Biology Reporter 01/2014; · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using 'omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.
    Frontiers in Plant Science 01/2014; 5:805. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.
    BioMed Research International 01/2015; 2015:547495. · 2.71 Impact Factor

Full-text

Download
77 Downloads
Available from
May 22, 2014